multimodalart HF staff commited on
Commit
8fd0cd1
·
verified ·
1 Parent(s): 3ea2e8b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +109 -0
app.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+
4
+ from diffusers import FluxPriorReduxPipeline, FluxPipeline
5
+ from diffusers.utils import load_image
6
+ import spaces
7
+
8
+ MAX_SEED = np.iinfo(np.int32).max
9
+ MAX_IMAGE_SIZE = 2048
10
+
11
+ pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(
12
+ "black-forest-labs/FLUX.1-Redux-dev",
13
+ revision="refs/pr/8",
14
+ torch_dtype=torch.bfloat16
15
+ ).to("cuda")
16
+
17
+ pipe = FluxPipeline.from_pretrained(
18
+ "black-forest-labs/FLUX.1-dev" ,
19
+ text_encoder=None,
20
+ text_encoder_2=None,
21
+ torch_dtype=torch.bfloat16
22
+ ).to("cuda")
23
+
24
+ @spaces.GPU
25
+ def infer(control_image, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
26
+ pipe_prior_output = pipe_prior_redux(control_image)
27
+ images = pipe(
28
+ guidance_scale=guidance_scale,
29
+ num_inference_steps=num_inference_steps,
30
+ generator=torch.Generator("cpu").manual_seed(seed),
31
+ **pipe_prior_output,
32
+ ).images[0]
33
+ return images
34
+ css="""
35
+ #col-container {
36
+ margin: 0 auto;
37
+ max-width: 520px;
38
+ }
39
+ """
40
+
41
+ with gr.Blocks(css=css) as demo:
42
+
43
+ with gr.Column(elem_id="col-container"):
44
+ gr.Markdown(f"""# FLUX.1 Redux [dev]
45
+ An adapter for FLUX [dev] to create image variations
46
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
47
+ """)
48
+
49
+ input_image = gr.Image(label="Image to create variations")
50
+ run_button = gr.Button("Run")
51
+
52
+ result = gr.Image(label="Result", show_label=False)
53
+
54
+ with gr.Accordion("Advanced Settings", open=False):
55
+
56
+ seed = gr.Slider(
57
+ label="Seed",
58
+ minimum=0,
59
+ maximum=MAX_SEED,
60
+ step=1,
61
+ value=0,
62
+ )
63
+
64
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
65
+
66
+ with gr.Row():
67
+
68
+ width = gr.Slider(
69
+ label="Width",
70
+ minimum=256,
71
+ maximum=MAX_IMAGE_SIZE,
72
+ step=32,
73
+ value=1024,
74
+ )
75
+
76
+ height = gr.Slider(
77
+ label="Height",
78
+ minimum=256,
79
+ maximum=MAX_IMAGE_SIZE,
80
+ step=32,
81
+ value=1024,
82
+ )
83
+
84
+ with gr.Row():
85
+
86
+ guidance_scale = gr.Slider(
87
+ label="Guidance Scale",
88
+ minimum=1,
89
+ maximum=15,
90
+ step=0.1,
91
+ value=3.5,
92
+ )
93
+
94
+ num_inference_steps = gr.Slider(
95
+ label="Number of inference steps",
96
+ minimum=1,
97
+ maximum=50,
98
+ step=1,
99
+ value=28,
100
+ )
101
+
102
+ gr.on(
103
+ triggers=[run_button.click],
104
+ fn = infer,
105
+ inputs = [input_image, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
106
+ outputs = [result, seed]
107
+ )
108
+
109
+ demo.launch()