kadirnar commited on
Commit
580270a
·
1 Parent(s): 4f9e791
Files changed (4) hide show
  1. demo.py +0 -110
  2. testv1.jpg +0 -0
  3. testv2.mp4 +0 -0
  4. testv3.jpeg +0 -0
demo.py DELETED
@@ -1,110 +0,0 @@
1
- from metaseg import (
2
- SahiAutoSegmentation,
3
- SegAutoMaskPredictor,
4
- SegManualMaskPredictor,
5
- sahi_sliced_predict,
6
- )
7
-
8
- # For image
9
-
10
-
11
- def automask_image_app(
12
- image_path, model_type, points_per_side, points_per_batch, min_area
13
- ):
14
- SegAutoMaskPredictor().image_predict(
15
-
16
- source=image_path,
17
- model_type=model_type, # vit_l, vit_h, vit_b
18
- points_per_side=points_per_side,
19
- points_per_batch=points_per_batch,
20
- min_area=min_area,
21
- output_path="output.png",
22
- show=False,
23
- save=True,
24
- )
25
- return "output.png"
26
-
27
-
28
- # For video
29
-
30
-
31
- def automask_video_app(
32
- video_path, model_type, points_per_side, points_per_batch, min_area
33
- ):
34
- SegAutoMaskPredictor().video_predict(
35
- source=video_path,
36
- model_type=model_type, # vit_l, vit_h, vit_b
37
- points_per_side=points_per_side,
38
- points_per_batch=points_per_batch,
39
- min_area=min_area,
40
- output_path="output.mp4",
41
- )
42
- return "output.mp4"
43
-
44
-
45
- # For manuel box and point selection
46
-
47
-
48
- def manual_app(
49
- image_path,
50
- model_type,
51
- input_point,
52
- input_label,
53
- input_box,
54
- multimask_output,
55
- random_color,
56
- ):
57
- SegManualMaskPredictor().image_predict(
58
- source=image_path,
59
- model_type=model_type, # vit_l, vit_h, vit_b
60
- input_point=input_point,
61
- input_label=input_label,
62
- input_box=input_box,
63
- multimask_output=multimask_output,
64
- random_color=random_color,
65
- output_path="output.png",
66
- show=False,
67
- save=True,
68
- )
69
- return "output.png"
70
-
71
-
72
- # For sahi sliced prediction
73
-
74
-
75
- def sahi_autoseg_app(
76
- image_path,
77
- sam_model_type,
78
- detection_model_type,
79
- detection_model_path,
80
- conf_th,
81
- image_size,
82
- slice_height,
83
- slice_width,
84
- overlap_height_ratio,
85
- overlap_width_ratio,
86
- ):
87
- boxes = sahi_sliced_predict(
88
- image_path=image_path,
89
- # yolov8, detectron2, mmdetection, torchvision
90
- detection_model_type=detection_model_type,
91
- detection_model_path=detection_model_path,
92
- conf_th=conf_th,
93
- image_size=image_size,
94
- slice_height=slice_height,
95
- slice_width=slice_width,
96
- overlap_height_ratio=overlap_height_ratio,
97
- overlap_width_ratio=overlap_width_ratio,
98
- )
99
-
100
- SahiAutoSegmentation().image_predict(
101
- source=image_path,
102
- model_type=sam_model_type,
103
- input_box=boxes,
104
- multimask_output=False,
105
- random_color=False,
106
- show=False,
107
- save=True,
108
- )
109
-
110
- return "output.png"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
testv1.jpg DELETED
Binary file (670 kB)
 
testv2.mp4 DELETED
Binary file (795 kB)
 
testv3.jpeg DELETED
Binary file (106 kB)