Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from whisperplus.pipelines.whisper import SpeechToTextPipeline
|
4 |
-
from whisperplus.pipelines.whisper_diarize import ASRDiarizationPipeline
|
5 |
from whisperplus.utils.download_utils import download_and_convert_to_mp3
|
6 |
from whisperplus.utils.text_utils import format_speech_to_dialogue
|
7 |
|
@@ -27,35 +26,6 @@ def youtube_url_to_text(url, model_id, language_choice):
|
|
27 |
return transcript, video_path
|
28 |
|
29 |
|
30 |
-
def speaker_diarization(url, model_id):
|
31 |
-
"""
|
32 |
-
Main function that downloads and converts a video to MP3 format, performs speech-to-text conversion using
|
33 |
-
a specified model, and returns the transcript along with the video path.
|
34 |
-
|
35 |
-
Args:
|
36 |
-
url (str): The URL of the video to download and convert.
|
37 |
-
model_id (str): The ID of the speech-to-text model to use.
|
38 |
-
language_choice (str): The language choice for the speech-to-text conversion.
|
39 |
-
|
40 |
-
Returns:
|
41 |
-
transcript (str): The transcript of the speech-to-text conversion.
|
42 |
-
video_path (str): The path of the downloaded video.
|
43 |
-
"""
|
44 |
-
|
45 |
-
pipeline = ASRDiarizationPipeline.from_pretrained(
|
46 |
-
asr_model=model_id,
|
47 |
-
diarizer_model="pyannote/speaker-diarization",
|
48 |
-
use_auth_token="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",
|
49 |
-
chunk_length_s=30,
|
50 |
-
device="cuda",
|
51 |
-
)
|
52 |
-
|
53 |
-
audio_path = download_and_convert_to_mp3(url)
|
54 |
-
output_text = pipeline(audio_path)
|
55 |
-
dialogue = format_speech_to_dialogue(output_text)
|
56 |
-
return dialogue, audio_path
|
57 |
-
|
58 |
-
|
59 |
def youtube_url_to_text_app():
|
60 |
with gr.Blocks():
|
61 |
with gr.Row():
|
@@ -104,44 +74,6 @@ def youtube_url_to_text_app():
|
|
104 |
)
|
105 |
|
106 |
|
107 |
-
def speaker_diarization_app():
|
108 |
-
with gr.Blocks():
|
109 |
-
with gr.Row():
|
110 |
-
with gr.Column():
|
111 |
-
youtube_url_path = gr.Text(placeholder="Enter Youtube URL", label="Youtube URL")
|
112 |
-
|
113 |
-
whisper_model_id = gr.Dropdown(
|
114 |
-
choices=[
|
115 |
-
"openai/whisper-large-v3",
|
116 |
-
"openai/whisper-large",
|
117 |
-
"openai/whisper-medium",
|
118 |
-
"openai/whisper-base",
|
119 |
-
"openai/whisper-small",
|
120 |
-
"openai/whisper-tiny",
|
121 |
-
],
|
122 |
-
value="openai/whisper-large-v3",
|
123 |
-
label="Whisper Model",
|
124 |
-
)
|
125 |
-
|
126 |
-
num_speakers = gr.Number(value=2, label="Number of Speakers")
|
127 |
-
min_speaker = gr.Number(value=1, label="Minimum Number of Speakers")
|
128 |
-
max_speaker = gr.Number(value=2, label="Maximum Number of Speakers")
|
129 |
-
whisperplus_in_predict = gr.Button(value="Generator")
|
130 |
-
|
131 |
-
with gr.Column():
|
132 |
-
output_text = gr.Textbox(label="Output Text")
|
133 |
-
output_audio = gr.Audio(label="Output Audio")
|
134 |
-
|
135 |
-
whisperplus_in_predict.click(
|
136 |
-
fn=speaker_diarization,
|
137 |
-
inputs=[
|
138 |
-
youtube_url_path,
|
139 |
-
whisper_model_id,
|
140 |
-
],
|
141 |
-
outputs=[output_text, output_audio],
|
142 |
-
)
|
143 |
-
|
144 |
-
|
145 |
gradio_app = gr.Blocks()
|
146 |
with gradio_app:
|
147 |
gr.HTML(
|
@@ -161,8 +93,6 @@ with gradio_app:
|
|
161 |
with gr.Column():
|
162 |
with gr.Tab(label="Youtube URL to Text"):
|
163 |
youtube_url_to_text_app()
|
164 |
-
with gr.Tab(label="Speaker Diarization"):
|
165 |
-
speaker_diarization_app()
|
166 |
|
167 |
gradio_app.queue()
|
168 |
gradio_app.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from whisperplus.pipelines.whisper import SpeechToTextPipeline
|
|
|
4 |
from whisperplus.utils.download_utils import download_and_convert_to_mp3
|
5 |
from whisperplus.utils.text_utils import format_speech_to_dialogue
|
6 |
|
|
|
26 |
return transcript, video_path
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def youtube_url_to_text_app():
|
30 |
with gr.Blocks():
|
31 |
with gr.Row():
|
|
|
74 |
)
|
75 |
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
gradio_app = gr.Blocks()
|
78 |
with gradio_app:
|
79 |
gr.HTML(
|
|
|
93 |
with gr.Column():
|
94 |
with gr.Tab(label="Youtube URL to Text"):
|
95 |
youtube_url_to_text_app()
|
|
|
|
|
96 |
|
97 |
gradio_app.queue()
|
98 |
gradio_app.launch(debug=True)
|