|
import streamlit as st |
|
from transformers import pipeline |
|
|
|
|
|
model_name = "TurkuNLP/bert-base-finnish-cased-v1" |
|
nlp = pipeline("fill-mask", model=model_name) |
|
|
|
st.title("Finnish Language Understanding App") |
|
|
|
st.write("This app demonstrates understanding of the Finnish language.") |
|
|
|
|
|
user_input = st.text_input("Enter a sentence in Finnish:") |
|
|
|
if user_input: |
|
st.write("You entered:", user_input) |
|
|
|
|
|
masked_input = user_input.replace("____", "[MASK]") |
|
results = nlp(masked_input) |
|
|
|
st.write("Predictions for the masked word:") |
|
for result in results: |
|
st.write(f"Prediction: {result['token_str']}, Score: {result['score']:.4f}") |
|
|
|
if st.checkbox("Show example usage"): |
|
st.write("Example sentence: Hän on ____ ystävä.") |
|
example_results = nlp("Hän on [MASK] ystävä.") |
|
st.write("Predictions for the masked word in the example:") |
|
for result in example_results: |
|
st.write(f"Prediction: {result['token_str']}, Score: {result['score']:.4f}") |
|
|