Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,31 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Load the pre-trained Finnish model
|
5 |
+
model_name = "TurkuNLP/bert-base-finnish-cased-v1"
|
6 |
+
nlp = pipeline("fill-mask", model=model_name)
|
7 |
|
8 |
+
st.title("Finnish Language Understanding App")
|
9 |
+
|
10 |
+
st.write("This app demonstrates understanding of the Finnish language.")
|
11 |
+
|
12 |
+
# User input
|
13 |
+
user_input = st.text_input("Enter a sentence in Finnish:")
|
14 |
+
|
15 |
+
if user_input:
|
16 |
+
st.write("You entered:", user_input)
|
17 |
+
|
18 |
+
# Use the model to predict masked words (as a simple example of language understanding)
|
19 |
+
masked_input = user_input.replace("____", "[MASK]")
|
20 |
+
results = nlp(masked_input)
|
21 |
+
|
22 |
+
st.write("Predictions for the masked word:")
|
23 |
+
for result in results:
|
24 |
+
st.write(f"Prediction: {result['token_str']}, Score: {result['score']:.4f}")
|
25 |
+
|
26 |
+
if st.checkbox("Show example usage"):
|
27 |
+
st.write("Example sentence: Hän on ____ ystävä.")
|
28 |
+
example_results = nlp("Hän on [MASK] ystävä.")
|
29 |
+
st.write("Predictions for the masked word in the example:")
|
30 |
+
for result in example_results:
|
31 |
+
st.write(f"Prediction: {result['token_str']}, Score: {result['score']:.4f}")
|