Spaces:
Sleeping
Sleeping
import streamlit as st | |
from fastai.vision.all import * | |
import pathlib | |
plt = platform.system() | |
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath | |
current_dir = os.getcwd() | |
model = 'resnet_model_17_Sep_1.pkl' | |
model_path = os.path.join(current_dir, model) | |
model = load_learner(model_path) | |
st.title("Defect Classification") | |
st.write("Upload an image to check whether if it's normal or defective (stain)") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Perform Predictions | |
if st.button("Predict"): | |
img = PILImage.create(uploaded_file) | |
# Make predictions | |
predictions, _ = model.get_preds(dl=model.dls.test_dl([img])) | |
# Get the predicted class index | |
predicted_class_idx = predictions.argmax(dim=1).item() | |
# Get the confidence score for the predicted class | |
confidence_score = predictions[0][predicted_class_idx].item() | |
# Map the class index to class name | |
class_names = model.dls.vocab | |
predicted_class = class_names[predicted_class_idx] | |
# Display the prediction and confidence score | |
st.write(f"Prediction: {predicted_class}") | |
st.write(f"Confidence: {confidence_score:.4f}") | |