import streamlit as st from fastai.vision.all import * import pathlib plt = platform.system() if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath current_dir = os.getcwd() model = 'resnet_model_17_Sep_1.pkl' model_path = os.path.join(current_dir, model) model = load_learner(model_path) st.title("Defect Classification") st.write("Upload an image to check whether if it's normal or defective (stain)") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) # Perform Predictions if st.button("Predict"): img = PILImage.create(uploaded_file) # Make predictions predictions, _ = model.get_preds(dl=model.dls.test_dl([img])) # Get the predicted class index predicted_class_idx = predictions.argmax(dim=1).item() # Get the confidence score for the predicted class confidence_score = predictions[0][predicted_class_idx].item() # Map the class index to class name class_names = model.dls.vocab predicted_class = class_names[predicted_class_idx] # Display the prediction and confidence score st.write(f"Prediction: {predicted_class}") st.write(f"Confidence: {confidence_score:.4f}")