Spaces:
Sleeping
A newer version of the Gradio SDK is available:
5.12.0
OpenAI compatible API
The main API for this project is meant to be a drop-in replacement to the OpenAI API, including Chat and Completions endpoints.
- It is 100% offline and private.
- It doesn't create any logs.
- It doesn't connect to OpenAI.
- It doesn't use the openai-python library.
Starting the API
Add --api
to your command-line flags.
- To create a public Cloudflare URL, add the
--public-api
flag. - To listen on your local network, add the
--listen
flag. - To change the port, which is 5000 by default, use
--api-port 1234
(change 1234 to your desired port number). - To use SSL, add
--ssl-keyfile key.pem --ssl-certfile cert.pem
. Note that it doesn't work with--public-api
. - To use an API key for authentication, add
--api-key yourkey
.
Examples
For the documentation with all the parameters and their types, consult http://127.0.0.1:5000/docs
or the typing.py file.
The official examples in the OpenAI documentation should also work, and the same parameters apply (although the API here has more optional parameters).
Completions
curl http://127.0.0.1:5000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"prompt": "This is a cake recipe:\n\n1.",
"max_tokens": 200,
"temperature": 1,
"top_p": 0.9,
"seed": 10
}'
Chat completions
Works best with instruction-following models. If the "instruction_template" variable is not provided, it will be guessed automatically based on the model name using the regex patterns in models/config.yaml
.
curl http://127.0.0.1:5000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "user",
"content": "Hello!"
}
],
"mode": "instruct",
"instruction_template": "Alpaca"
}'
Chat completions with characters
curl http://127.0.0.1:5000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "user",
"content": "Hello! Who are you?"
}
],
"mode": "chat",
"character": "Example"
}'
SSE streaming
curl http://127.0.0.1:5000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "user",
"content": "Hello!"
}
],
"mode": "instruct",
"instruction_template": "Alpaca",
"stream": true
}'
Logits
curl -k http://127.0.0.1:5000/v1/internal/logits \
-H "Content-Type: application/json" \
-d '{
"prompt": "Who is best, Asuka or Rei? Answer:",
"use_samplers": false
}'
Logits after sampling parameters
curl -k http://127.0.0.1:5000/v1/internal/logits \
-H "Content-Type: application/json" \
-d '{
"prompt": "Who is best, Asuka or Rei? Answer:",
"use_samplers": true,
"top_k": 3
}'
Python chat example
import requests
url = "http://127.0.0.1:5000/v1/chat/completions"
headers = {
"Content-Type": "application/json"
}
history = []
while True:
user_message = input("> ")
history.append({"role": "user", "content": user_message})
data = {
"mode": "chat",
"character": "Example",
"messages": history
}
response = requests.post(url, headers=headers, json=data, verify=False)
assistant_message = response.json()['choices'][0]['message']['content']
history.append({"role": "assistant", "content": assistant_message})
print(assistant_message)
Python chat example with streaming
Start the script with python -u
to see the output in real time.
import requests
import sseclient # pip install sseclient-py
import json
url = "http://127.0.0.1:5000/v1/chat/completions"
headers = {
"Content-Type": "application/json"
}
history = []
while True:
user_message = input("> ")
history.append({"role": "user", "content": user_message})
data = {
"mode": "instruct",
"stream": True,
"messages": history
}
stream_response = requests.post(url, headers=headers, json=data, verify=False, stream=True)
client = sseclient.SSEClient(stream_response)
assistant_message = ''
for event in client.events():
payload = json.loads(event.data)
chunk = payload['choices'][0]['message']['content']
assistant_message += chunk
print(chunk, end='')
print()
history.append({"role": "assistant", "content": assistant_message})
Python completions example with streaming
Start the script with python -u
to see the output in real time.
import json
import requests
import sseclient # pip install sseclient-py
url = "http://127.0.0.1:5000/v1/completions"
headers = {
"Content-Type": "application/json"
}
data = {
"prompt": "This is a cake recipe:\n\n1.",
"max_tokens": 200,
"temperature": 1,
"top_p": 0.9,
"seed": 10,
"stream": True,
}
stream_response = requests.post(url, headers=headers, json=data, verify=False, stream=True)
client = sseclient.SSEClient(stream_response)
print(data['prompt'], end='')
for event in client.events():
payload = json.loads(event.data)
print(payload['choices'][0]['text'], end='')
print()
Environment variables
The following environment variables can be used (they take precendence over everything else):
Variable Name | Description | Example Value |
---|---|---|
OPENEDAI_PORT |
Port number | 5000 |
OPENEDAI_CERT_PATH |
SSL certificate file path | cert.pem |
OPENEDAI_KEY_PATH |
SSL key file path | key.pem |
OPENEDAI_DEBUG |
Enable debugging (set to 1) | 1 |
SD_WEBUI_URL |
WebUI URL (used by endpoint) | http://127.0.0.1:7861 |
OPENEDAI_EMBEDDING_MODEL |
Embedding model (if applicable) | sentence-transformers/all-mpnet-base-v2 |
OPENEDAI_EMBEDDING_DEVICE |
Embedding device (if applicable) | cuda |
Persistent settings with settings.yaml
You can also set the following variables in your settings.yaml
file:
openai-embedding_device: cuda
openai-embedding_model: "sentence-transformers/all-mpnet-base-v2"
openai-sd_webui_url: http://127.0.0.1:7861
openai-debug: 1
Third-party application setup
You can usually force an application that uses the OpenAI API to connect to the local API by using the following environment variables:
OPENAI_API_HOST=http://127.0.0.1:5000
or
OPENAI_API_KEY=sk-111111111111111111111111111111111111111111111111
OPENAI_API_BASE=http://127.0.0.1:5000/v1
With the official python openai client, the address can be set like this:
import openai
openai.api_key = "..."
openai.api_base = "http://127.0.0.1:5000/v1"
openai.api_version = "2023-05-15"
If using .env files to save the OPENAI_API_BASE
and OPENAI_API_KEY
variables, make sure the .env file is loaded before the openai module is imported:
from dotenv import load_dotenv
load_dotenv() # make sure the environment variables are set before import
import openai
With the official Node.js openai client it is slightly more more complex because the environment variables are not used by default, so small source code changes may be required to use the environment variables, like so:
const openai = OpenAI(
Configuration({
apiKey: process.env.OPENAI_API_KEY,
basePath: process.env.OPENAI_API_BASE
})
);
For apps made with the chatgpt-api Node.js client library:
const api = new ChatGPTAPI({
apiKey: process.env.OPENAI_API_KEY,
apiBaseUrl: process.env.OPENAI_API_BASE
});
Embeddings (alpha)
Embeddings requires sentence-transformers
installed, but chat and completions will function without it loaded. The embeddings endpoint is currently using the HuggingFace model: sentence-transformers/all-mpnet-base-v2
for embeddings. This produces 768 dimensional embeddings (the same as the text-davinci-002 embeddings), which is different from OpenAI's current default text-embedding-ada-002
model which produces 1536 dimensional embeddings. The model is small-ish and fast-ish. This model and embedding size may change in the future.
model name | dimensions | input max tokens | speed | size | Avg. performance |
---|---|---|---|---|---|
text-embedding-ada-002 | 1536 | 8192 | - | - | - |
text-davinci-002 | 768 | 2046 | - | - | - |
all-mpnet-base-v2 | 768 | 384 | 2800 | 420M | 63.3 |
all-MiniLM-L6-v2 | 384 | 256 | 14200 | 80M | 58.8 |
In short, the all-MiniLM-L6-v2 model is 5x faster, 5x smaller ram, 2x smaller storage, and still offers good quality. Stats from (https://www.sbert.net/docs/pretrained_models.html). To change the model from the default you can set the environment variable OPENEDAI_EMBEDDING_MODEL
, ex. "OPENEDAI_EMBEDDING_MODEL=all-MiniLM-L6-v2".
Warning: You cannot mix embeddings from different models even if they have the same dimensions. They are not comparable.
Compatibility & not so compatibility
Note: the table below may be obsolete.
API endpoint | tested with | notes |
---|---|---|
/v1/chat/completions | openai.ChatCompletion.create() | Use it with instruction following models |
/v1/embeddings | openai.Embedding.create() | Using SentenceTransformer embeddings |
/v1/images/generations | openai.Image.create() | Bare bones, no model configuration, response_format='b64_json' only. |
/v1/moderations | openai.Moderation.create() | Basic initial support via embeddings |
/v1/models | openai.Model.list() | Lists models, Currently loaded model first, plus some compatibility options |
/v1/models/{id} | openai.Model.get() | returns whatever you ask for |
/v1/edits | openai.Edit.create() | Removed, use /v1/chat/completions instead |
/v1/text_completion | openai.Completion.create() | Legacy endpoint, variable quality based on the model |
/v1/completions | openai api completions.create | Legacy endpoint (v0.25) |
/v1/engines/*/embeddings | python-openai v0.25 | Legacy endpoint |
/v1/engines/*/generate | openai engines.generate | Legacy endpoint |
/v1/engines | openai engines.list | Legacy Lists models |
/v1/engines/{model_name} | openai engines.get -i {model_name} | You can use this legacy endpoint to load models via the api or command line |
/v1/images/edits | openai.Image.create_edit() | not yet supported |
/v1/images/variations | openai.Image.create_variation() | not yet supported |
/v1/audio/* | openai.Audio.* | supported |
/v1/files* | openai.Files.* | not yet supported |
/v1/fine-tunes* | openai.FineTune.* | not yet supported |
/v1/search | openai.search, engines.search | not yet supported |
Applications
Almost everything needs the OPENAI_API_KEY
and OPENAI_API_BASE
environment variable set, but there are some exceptions.
Note: the table below may be obsolete.
Compatibility | Application/Library | Website | Notes |
---|---|---|---|
β β | openai-python (v0.25+) | https://github.com/openai/openai-python | only the endpoints from above are working. OPENAI_API_BASE=http://127.0.0.1:5001/v1 |
β β | openai-node | https://github.com/openai/openai-node | only the endpoints from above are working. environment variables don't work by default, but can be configured (see above) |
β β | chatgpt-api | https://github.com/transitive-bullshit/chatgpt-api | only the endpoints from above are working. environment variables don't work by default, but can be configured (see above) |
β | anse | https://github.com/anse-app/anse | API Key & URL configurable in UI, Images also work |
β | shell_gpt | https://github.com/TheR1D/shell_gpt | OPENAI_API_HOST=http://127.0.0.1:5001 |
β | gpt-shell | https://github.com/jla/gpt-shell | OPENAI_API_BASE=http://127.0.0.1:5001/v1 |
β | gpt-discord-bot | https://github.com/openai/gpt-discord-bot | OPENAI_API_BASE=http://127.0.0.1:5001/v1 |
β | OpenAI for Notepad++ | https://github.com/Krazal/nppopenai | api_url=http://127.0.0.1:5001 in the config file, or environment variables |
β | vscode-openai | https://marketplace.visualstudio.com/items?itemName=AndrewButson.vscode-openai | OPENAI_API_BASE=http://127.0.0.1:5001/v1 |
β β | langchain | https://github.com/hwchase17/langchain | OPENAI_API_BASE=http://127.0.0.1:5001/v1 even with a good 30B-4bit model the result is poor so far. It assumes zero shot python/json coding. Some model tailored prompt formatting improves results greatly. |
β β | Auto-GPT | https://github.com/Significant-Gravitas/Auto-GPT | OPENAI_API_BASE=http://127.0.0.1:5001/v1 Same issues as langchain. Also assumes a 4k+ context |
β β | babyagi | https://github.com/yoheinakajima/babyagi | OPENAI_API_BASE=http://127.0.0.1:5001/v1 |
β | guidance | https://github.com/microsoft/guidance | logit_bias and logprobs not yet supported |