AgriChatbot / app.py
Neurolingua's picture
Update app.py
0c84d9c verified
from flask import Flask, request
from twilio.twiml.messaging_response import MessagingResponse
from twilio.rest import Client
import os
from mistralai import Mistral
import requests
from requests.auth import HTTPBasicAuth
app = Flask(__name__)
account_sid = 'AC7f8c344c6593572a0c925ab4c1b66cc6'
auth_token ='01a62fe8d92f27552632527b6513bd4a'
client= Client(account_sid, auth_token)
from_whatsapp_number = 'whatsapp:+14155238886'
PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""
model = "mistral-large-latest"
api_key='xQ2Zhfsp4cLar4lvBRDWZKljvp0Ej427'
client1 = Mistral(api_key=api_key)
def generate_response(query,chat_history):
chat_response = client1.chat.complete(
model= model,
messages = [
{
"role": "user",
"content": f"{query}? provide response within 2 sentence",
},
]
)
return chat_response.choices[0].message.content
@app.route('/whatsapp', methods=['POST'])
def whatsapp_webhook():
global bookdata
incoming_msg = request.values.get('Body', '').lower()
sender = request.values.get('From')
num_media = int(request.values.get('NumMedia', 0))
chat_history = 0
if num_media > 0:
media_url = request.values.get('MediaUrl0')
content_type = request.values.get('MediaContentType0')
if content_type.startswith('image/'):
# Handle image processing (disease/pest detection)
if 1==1:
filepath = convert_img(media_url, account_sid, auth_token)
bd=extract_text_from_image(filepath)
if bd!='':
bookdata=booktask(bd)
response_text="Your report for bookkeeping saved successfully."
elif 'none' not in filepath:
if predict_pest(filepath):
res=predict_pest(filepath)
if res=='x' or res=='X':
response_text ='APHIDS'
else:
response_text = predict_pest(filepath)
elif predict_disease(filepath):
res=predict_disease(filepath)
if res=='x' or res=='X':
response_text ='APHIDS'
else:
response_text = predict_disease(filepath)
else:
response_text = "Please upload other image with good quality."
else:
response_text = 'no data'
else:
# Handle PDF processing
filepath = download_and_save_as_txt(media_url, account_sid, auth_token)
response_text = 'PDF uploaded successfully'
elif ('weather' in incoming_msg.lower()) or ('climate' in incoming_msg.lower()) or (
'temperature' in incoming_msg.lower()):
weather = get_weather(incoming_msg.lower())
response_text = generate_response(incoming_msg + ' data is ' + weather+"convert to celcius.Make sure you return only answer.", chat_history)
elif 'bookkeeping' in incoming_msg:
response_text = '''1. General Information Farmer: John Doe | Farm: Green Valley Farms | Size: 50 acres Location: XYZ Village, State, Country | Period: Jan 1, 2024 - Dec 31, 2024 \n2. Income Crop Sales (Wheat): $2,000 | Livestock Sales (Cattle): $7,500 Subsidies: $1,000 | Equipment Rental: $500 \n3. Expenses & Assets Expenses: Seeds/Fertilizers: $1,000 | Labor: $2,000 | Maintenance: $300 | Fuel: $600 | Feed: $2,000 | Insurance: $800 | Utilities: $400 Assets: Tractor: $25,000 (Depreciation: $2,500) | Land: $100,000 (Market Value: $120,000) | Cattle: 50 head (Value: $75,000)'''
elif ('rates' in incoming_msg.lower()) or ('price' in incoming_msg.lower()) or (
'market' in incoming_msg.lower()) or ('rate' in incoming_msg.lower()) or ('prices' in incoming_msg.lower()):
rates = get_rates()
response_text = generate_response(incoming_msg + ' data is ' + rates, chat_history)
elif ('news' in incoming_msg.lower()) or ('information' in incoming_msg.lower()):
news = get_news()
response_text = generate_response('Summarise and provide the top 5 news in india as bullet points' + ' Data is ' + str(news), chat_history)
elif ('pdf' in incoming_msg.lower()):
response_text =respond_pdf(incoming_msg)
elif ('farm data' in incoming_msg.lower()):
response_text =' Click the link to monitor your farm.\n https://huggingface.co/spaces/Neurolingua/Smart-Agri-system'
else:
response_text = generate_response(incoming_msg, chat_history)
send_message(sender, response_text)
return '', 204
def process_and_query_pdf(filepath):
# Read and process the PDF
reader = PdfReader(filepath)
text = ''
for page in reader.pages:
text += page.extract_text()
if not text:
return "Sorry, the PDF content could not be extracted."
# Generate response based on extracted PDF content
response_text = generate_response(f"The PDF content is {text}", "")
return response_text
def send_message(recipient, message):
client.messages.create(
body=message,
from_=from_whatsapp_number,
to='whatsapp:+919342540825'
)
def send_initial_message(to_number):
send_message(
f'whatsapp:{to_number}',
'Welcome to the Agri AI Chatbot! How can I assist you today? You may get real-time information from me!!'
)
if __name__ == "__main__":
app.run(host='0.0.0.0', port=7860,debug=1==1)