from flask import Flask, request from twilio.twiml.messaging_response import MessagingResponse from twilio.rest import Client import os from mistralai import Mistral import requests from requests.auth import HTTPBasicAuth app = Flask(__name__) account_sid = 'AC7f8c344c6593572a0c925ab4c1b66cc6' auth_token ='01a62fe8d92f27552632527b6513bd4a' client= Client(account_sid, auth_token) from_whatsapp_number = 'whatsapp:+14155238886' PROMPT_TEMPLATE = """ Answer the question based only on the following context: {context} --- Answer the question based on the above context: {question} """ model = "mistral-large-latest" api_key='xQ2Zhfsp4cLar4lvBRDWZKljvp0Ej427' client1 = Mistral(api_key=api_key) def generate_response(query,chat_history): chat_response = client1.chat.complete( model= model, messages = [ { "role": "user", "content": f"{query}? provide response within 2 sentence", }, ] ) return chat_response.choices[0].message.content @app.route('/whatsapp', methods=['POST']) def whatsapp_webhook(): global bookdata incoming_msg = request.values.get('Body', '').lower() sender = request.values.get('From') num_media = int(request.values.get('NumMedia', 0)) chat_history = 0 if num_media > 0: media_url = request.values.get('MediaUrl0') content_type = request.values.get('MediaContentType0') if content_type.startswith('image/'): # Handle image processing (disease/pest detection) if 1==1: filepath = convert_img(media_url, account_sid, auth_token) bd=extract_text_from_image(filepath) if bd!='': bookdata=booktask(bd) response_text="Your report for bookkeeping saved successfully." elif 'none' not in filepath: if predict_pest(filepath): res=predict_pest(filepath) if res=='x' or res=='X': response_text ='APHIDS' else: response_text = predict_pest(filepath) elif predict_disease(filepath): res=predict_disease(filepath) if res=='x' or res=='X': response_text ='APHIDS' else: response_text = predict_disease(filepath) else: response_text = "Please upload other image with good quality." else: response_text = 'no data' else: # Handle PDF processing filepath = download_and_save_as_txt(media_url, account_sid, auth_token) response_text = 'PDF uploaded successfully' elif ('weather' in incoming_msg.lower()) or ('climate' in incoming_msg.lower()) or ( 'temperature' in incoming_msg.lower()): weather = get_weather(incoming_msg.lower()) response_text = generate_response(incoming_msg + ' data is ' + weather+"convert to celcius.Make sure you return only answer.", chat_history) elif 'bookkeeping' in incoming_msg: response_text = '''1. General Information Farmer: John Doe | Farm: Green Valley Farms | Size: 50 acres Location: XYZ Village, State, Country | Period: Jan 1, 2024 - Dec 31, 2024 \n2. Income Crop Sales (Wheat): $2,000 | Livestock Sales (Cattle): $7,500 Subsidies: $1,000 | Equipment Rental: $500 \n3. Expenses & Assets Expenses: Seeds/Fertilizers: $1,000 | Labor: $2,000 | Maintenance: $300 | Fuel: $600 | Feed: $2,000 | Insurance: $800 | Utilities: $400 Assets: Tractor: $25,000 (Depreciation: $2,500) | Land: $100,000 (Market Value: $120,000) | Cattle: 50 head (Value: $75,000)''' elif ('rates' in incoming_msg.lower()) or ('price' in incoming_msg.lower()) or ( 'market' in incoming_msg.lower()) or ('rate' in incoming_msg.lower()) or ('prices' in incoming_msg.lower()): rates = get_rates() response_text = generate_response(incoming_msg + ' data is ' + rates, chat_history) elif ('news' in incoming_msg.lower()) or ('information' in incoming_msg.lower()): news = get_news() response_text = generate_response('Summarise and provide the top 5 news in india as bullet points' + ' Data is ' + str(news), chat_history) elif ('pdf' in incoming_msg.lower()): response_text =respond_pdf(incoming_msg) elif ('farm data' in incoming_msg.lower()): response_text =' Click the link to monitor your farm.\n https://huggingface.co/spaces/Neurolingua/Smart-Agri-system' else: response_text = generate_response(incoming_msg, chat_history) send_message(sender, response_text) return '', 204 def process_and_query_pdf(filepath): # Read and process the PDF reader = PdfReader(filepath) text = '' for page in reader.pages: text += page.extract_text() if not text: return "Sorry, the PDF content could not be extracted." # Generate response based on extracted PDF content response_text = generate_response(f"The PDF content is {text}", "") return response_text def send_message(recipient, message): client.messages.create( body=message, from_=from_whatsapp_number, to='whatsapp:+919342540825' ) def send_initial_message(to_number): send_message( f'whatsapp:{to_number}', 'Welcome to the Agri AI Chatbot! How can I assist you today? You may get real-time information from me!!' ) if __name__ == "__main__": app.run(host='0.0.0.0', port=7860,debug=1==1)