Spaces:
Runtime error
Runtime error
import IPython.display as ipd | |
import gradio as gr | |
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule | |
from Utils.PLBERT.util import load_plbert | |
import phonemizer | |
from text_utils import TextCleaner | |
from utils import * | |
from models import * | |
from nltk.tokenize import word_tokenize | |
import librosa | |
import torchaudio | |
import torch.nn.functional as F | |
from torch import nn | |
from munch import Munch | |
import yaml | |
import time | |
import numpy as np | |
import random | |
import torch | |
import nltk | |
nltk.download('punkt_tab') | |
torch.manual_seed(0) | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = True | |
random.seed(0) | |
np.random.seed(0) | |
# load packages | |
textcleaner = TextCleaner() | |
# set up a transformation from a sound wave (an amplitude at each sampling step) to a mel spectrogram (80 dimensions). | |
to_mel = torchaudio.transforms.MelSpectrogram( | |
n_mels=80, n_fft=2048, win_length=1200, hop_length=300) | |
mean, std = -4, 4 | |
# Creates a binary mask of 1s for values in the tensor and zero for padding to the length of the longest vector. | |
def length_to_mask(lengths): | |
mask = torch.arange(lengths.max()).unsqueeze( | |
0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
# Converts a waveform to a normalized log-Mel spectrogram tensor. | |
def preprocess(wave): | |
wave_tensor = torch.from_numpy(wave).float() | |
mel_tensor = to_mel(wave_tensor) | |
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std | |
return mel_tensor | |
# Loads, trims, resamples an audio file, and computes its style and predictor encodings. | |
def compute_style(path): | |
wave, sr = librosa.load(path, sr=24000) | |
audio, index = librosa.effects.trim(wave, top_db=30) | |
if sr != 24000: | |
audio = librosa.resample(audio, sr, 24000) | |
mel_tensor = preprocess(audio).to(device) | |
with torch.no_grad(): | |
ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) # gets | |
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) | |
return torch.cat([ref_s, ref_p], dim=1) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
if device != 'cuda': | |
print("Using cpu as cuda is not available!") | |
else: | |
print("Using cuda") | |
# load phonemizer (converts text into phonemes) | |
global_phonemizer = phonemizer.backend.EspeakBackend( | |
language='en-us', preserve_punctuation=True, with_stress=True) | |
# model_folder_path="Models/LibriTTS-lora-ft/merged" # for inferencing the merged lora | |
# config = yaml.safe_load(open(model_folder_path + '/config.yml')) | |
# for inferencing the full fine-tuned model | |
model_folder_path = "Models/LibriTTS-fft" | |
# Rohan, why is the file here config_ft whereas for lora above it is config.yml . Are we loading what we think we are? | |
config = yaml.safe_load(open(model_folder_path + '/config_ft.yml')) | |
# load pretrained ASR model | |
ASR_config = config.get('ASR_config', False) | |
ASR_path = config.get('ASR_path', False) | |
text_aligner = load_ASR_models(ASR_path, ASR_config) | |
# load pretrained F0 model | |
F0_path = config.get('F0_path', False) | |
pitch_extractor = load_F0_models(F0_path) | |
# load BERT model | |
BERT_path = config.get('PLBERT_dir', False) | |
plbert = load_plbert(BERT_path) | |
model_params = recursive_munch(config['model_params']) | |
model = build_model(model_params, text_aligner, pitch_extractor, plbert) | |
_ = [model[key].eval() for key in model] | |
_ = [model[key].to(device) for key in model] | |
files = [f for f in os.listdir(model_folder_path) if f.endswith('.pth')] | |
sorted_files = sorted(files, key=lambda x: int(x.split('_')[-1].split('.')[0])) | |
print(sorted_files) | |
# I'm grabbing the last fine instead | |
params_whole = torch.load(model_folder_path + '/' + | |
sorted_files[-1], map_location='cpu') | |
if 'net' in params_whole.keys(): | |
print('yes') | |
params = params_whole['net'] | |
else: | |
params = params_whole | |
print('no') | |
for key in model: | |
if key in params: | |
print('%s loaded' % key) | |
try: | |
model[key].load_state_dict(params[key]) | |
except: | |
from collections import OrderedDict | |
state_dict = params[key] | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
# load params | |
model[key].load_state_dict(new_state_dict, strict=False) | |
# except: | |
# _load(params[key], model[key]) | |
# Loading the diffusion sampler | |
sampler = DiffusionSampler( | |
model.diffusion.diffusion, | |
sampler=ADPM2Sampler(), | |
sigma_schedule=KarrasSchedule( | |
sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters | |
clamp=False | |
) | |
def inference(text, ref_s, alpha=0.2, beta=0.2, diffusion_steps=10, embedding_scale=1): | |
""" | |
Generate speech from text using a diffusion-based approach with reference style blending. | |
Parameters: | |
- text: The input text to convert to speech. | |
- ref_s: The reference style and predictor encoder features from an audio snippet. | |
- alpha: Blending factor for the reference style (lower alpha means more like the reference). | |
- beta: Blending factor for the predictor features (lower beta means more like the reference). | |
- diffusion_steps: Number of steps in the diffusion process (more steps improve quality). | |
- embedding_scale: Scaling factor for the BERT embeddings. | |
""" | |
# Clean up and tokenize the input text | |
text = text.strip() | |
ps = global_phonemizer.phonemize([text]) | |
ps = word_tokenize(ps[0]) | |
ps = ' '.join(ps) | |
tokens = textcleaner(ps) | |
tokens.insert(0, 0) | |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
with torch.no_grad(): | |
# Get the length of the input tokens | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
# Create a mask for the input text to handle variable lengths | |
text_mask = length_to_mask(input_lengths).to(device) | |
# Encode the text using the text encoder | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
# Use BERT to get the prosodic text encoding (to be used for style prediction). | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
# Further reduce the dimensions of the BERT embeddings to be suitable for the predictor | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
# Generate an output style + predictor vector | |
s_pred = sampler( | |
noise=torch.randn((1, 256)).unsqueeze(1).to(device), | |
embedding=bert_dur, # BERT output embeddings | |
embedding_scale=embedding_scale, | |
features=ref_s, # Style and predictor features from reference audio | |
num_steps=diffusion_steps | |
).squeeze(1) | |
# Split the generated features into style and predictor components | |
s = s_pred[:, 128:] | |
ref = s_pred[:, :128] | |
# Blend the generated style features with the reference style | |
ref = alpha * ref + (1 - alpha) * ref_s[:, :128] | |
# Blend the generated predictor features with the reference predictor | |
s = beta * s + (1 - beta) * ref_s[:, 128:] | |
# Use the predictor to encode the text with the generated features | |
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) | |
# Pass through the LSTM to get duration predictions | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
# Process the duration predictions | |
duration = torch.sigmoid(duration).sum(axis=-1) | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
# Create a target alignment for the predicted durations | |
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
# Encode the prosody using the target alignment | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
# Adjust for HiFi-GAN decoder input format | |
asr_new = torch.zeros_like(en) | |
asr_new[:, :, 0] = en[:, :, 0] | |
asr_new[:, :, 1:] = en[:, :, 0:-1] | |
en = asr_new | |
# Predict F0 and N features (fundamental frequency and noise) | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
# Create the alignment for the text encoder output | |
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
# Adjust for HiFi-GAN decoder input format | |
asr_new = torch.zeros_like(asr) | |
asr_new[:, :, 0] = asr[:, :, 0] | |
asr_new[:, :, 1:] = asr[:, :, 0:-1] | |
asr = asr_new | |
# Decode the final audio output using the decoder | |
out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
# Return the generated audio, excluding a small pulse at the end | |
# weird pulse at the end of the model, need to be fixed later | |
return out.squeeze().cpu().numpy()[..., :-50] | |
import numpy as np | |
import gradio as gr | |
def tts_model(text): | |
# Assuming a reference path is used for style (you can adjust this path as needed) | |
ref_s = compute_style("Trelis_Data/wavs/med5_0.wav") | |
# Run inference to generate the output wav | |
wav = inference(text, ref_s, alpha=0.3, beta=0.3, | |
diffusion_steps=10, embedding_scale=1) | |
# Convert 1D wav array to 2D to match Gradio's expectations (mono audio) | |
wav = np.expand_dims(wav, axis=1) | |
# Return the audio as a tuple with sample rate | |
return 24000, wav # Assuming a 24000 Hz sample rate for the output audio | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=tts_model, | |
inputs=gr.Textbox(label="Input Text"), # Input text for speech generation | |
outputs=gr.Audio(label="Generated Audio", type="numpy"), # Generated TTS audio | |
live=False | |
) | |
# Launch the Gradio interface | |
interface.launch(share=True) | |