Neomindapp commited on
Commit
7959401
·
1 Parent(s): 4dd6ac6

first commit

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__
Configs/config.yml ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "Models/LJSpeech"
2
+ first_stage_path: "first_stage.pth"
3
+ save_freq: 2
4
+ log_interval: 10
5
+ device: "cuda"
6
+ epochs_1st: 200 # number of epochs for first stage training (pre-training)
7
+ epochs_2nd: 100 # number of peochs for second stage training (joint training)
8
+ batch_size: 16
9
+ max_len: 400 # maximum number of frames
10
+ pretrained_model: ""
11
+ second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
12
+ load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters
13
+
14
+ F0_path: "Utils/JDC/bst.t7"
15
+ ASR_config: "Utils/ASR/config.yml"
16
+ ASR_path: "Utils/ASR/epoch_00080.pth"
17
+ PLBERT_dir: 'Utils/PLBERT/'
18
+
19
+ data_params:
20
+ train_data: "Data/train_list.txt"
21
+ val_data: "Data/val_list.txt"
22
+ root_path: "/local/LJSpeech-1.1/wavs"
23
+ OOD_data: "Data/OOD_texts.txt"
24
+ min_length: 50 # sample until texts with this size are obtained for OOD texts
25
+
26
+ preprocess_params:
27
+ sr: 24000
28
+ spect_params:
29
+ n_fft: 2048
30
+ win_length: 1200
31
+ hop_length: 300
32
+
33
+ model_params:
34
+ multispeaker: false
35
+
36
+ dim_in: 64
37
+ hidden_dim: 512
38
+ max_conv_dim: 512
39
+ n_layer: 3
40
+ n_mels: 80
41
+
42
+ n_token: 178 # number of phoneme tokens
43
+ max_dur: 50 # maximum duration of a single phoneme
44
+ style_dim: 128 # style vector size
45
+
46
+ dropout: 0.2
47
+
48
+ # config for decoder
49
+ decoder:
50
+ type: 'istftnet' # either hifigan or istftnet
51
+ resblock_kernel_sizes: [3,7,11]
52
+ upsample_rates : [10, 6]
53
+ upsample_initial_channel: 512
54
+ resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
55
+ upsample_kernel_sizes: [20, 12]
56
+ gen_istft_n_fft: 20
57
+ gen_istft_hop_size: 5
58
+
59
+ # speech language model config
60
+ slm:
61
+ model: 'microsoft/wavlm-base-plus'
62
+ sr: 16000 # sampling rate of SLM
63
+ hidden: 768 # hidden size of SLM
64
+ nlayers: 13 # number of layers of SLM
65
+ initial_channel: 64 # initial channels of SLM discriminator head
66
+
67
+ # style diffusion model config
68
+ diffusion:
69
+ embedding_mask_proba: 0.1
70
+ # transformer config
71
+ transformer:
72
+ num_layers: 3
73
+ num_heads: 8
74
+ head_features: 64
75
+ multiplier: 2
76
+
77
+ # diffusion distribution config
78
+ dist:
79
+ sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
80
+ estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
81
+ mean: -3.0
82
+ std: 1.0
83
+
84
+ loss_params:
85
+ lambda_mel: 5. # mel reconstruction loss
86
+ lambda_gen: 1. # generator loss
87
+ lambda_slm: 1. # slm feature matching loss
88
+
89
+ lambda_mono: 1. # monotonic alignment loss (1st stage, TMA)
90
+ lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA)
91
+ TMA_epoch: 50 # TMA starting epoch (1st stage)
92
+
93
+ lambda_F0: 1. # F0 reconstruction loss (2nd stage)
94
+ lambda_norm: 1. # norm reconstruction loss (2nd stage)
95
+ lambda_dur: 1. # duration loss (2nd stage)
96
+ lambda_ce: 20. # duration predictor probability output CE loss (2nd stage)
97
+ lambda_sty: 1. # style reconstruction loss (2nd stage)
98
+ lambda_diff: 1. # score matching loss (2nd stage)
99
+
100
+ diff_epoch: 20 # style diffusion starting epoch (2nd stage)
101
+ joint_epoch: 50 # joint training starting epoch (2nd stage)
102
+
103
+ optimizer_params:
104
+ lr: 0.0001 # general learning rate
105
+ bert_lr: 0.00001 # learning rate for PLBERT
106
+ ft_lr: 0.00001 # learning rate for acoustic modules
107
+
108
+ slmadv_params:
109
+ min_len: 400 # minimum length of samples
110
+ max_len: 500 # maximum length of samples
111
+ batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
112
+ iter: 10 # update the discriminator every this iterations of generator update
113
+ thresh: 5 # gradient norm above which the gradient is scaled
114
+ scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
115
+ sig: 1.5 # sigma for differentiable duration modeling
116
+
Configs/config_ft.yml ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "Models/LJSpeech"
2
+ save_freq: 5
3
+ log_interval: 10
4
+ device: "cuda"
5
+ epochs: 50 # number of finetuning epoch (1 hour of data)
6
+ batch_size: 8
7
+ max_len: 400 # maximum number of frames
8
+ pretrained_model: "Models/LibriTTS/epochs_2nd_00020.pth"
9
+ second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
10
+ load_only_params: true # set to true if do not want to load epoch numbers and optimizer parameters
11
+
12
+ F0_path: "Utils/JDC/bst.t7"
13
+ ASR_config: "Utils/ASR/config.yml"
14
+ ASR_path: "Utils/ASR/epoch_00080.pth"
15
+ PLBERT_dir: 'Utils/PLBERT/'
16
+
17
+ data_params:
18
+ train_data: "Data/train_list.txt"
19
+ val_data: "Data/val_list.txt"
20
+ root_path: "/local/LJSpeech-1.1/wavs"
21
+ OOD_data: "Data/OOD_texts.txt"
22
+ min_length: 50 # sample until texts with this size are obtained for OOD texts
23
+
24
+ preprocess_params:
25
+ sr: 24000
26
+ spect_params:
27
+ n_fft: 2048
28
+ win_length: 1200
29
+ hop_length: 300
30
+
31
+ model_params:
32
+ multispeaker: true
33
+
34
+ dim_in: 64
35
+ hidden_dim: 512
36
+ max_conv_dim: 512
37
+ n_layer: 3
38
+ n_mels: 80
39
+
40
+ n_token: 178 # number of phoneme tokens
41
+ max_dur: 50 # maximum duration of a single phoneme
42
+ style_dim: 128 # style vector size
43
+
44
+ dropout: 0.2
45
+
46
+ # config for decoder
47
+ decoder:
48
+ type: 'hifigan' # either hifigan or istftnet
49
+ resblock_kernel_sizes: [3,7,11]
50
+ upsample_rates : [10,5,3,2]
51
+ upsample_initial_channel: 512
52
+ resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
53
+ upsample_kernel_sizes: [20,10,6,4]
54
+
55
+ # speech language model config
56
+ slm:
57
+ model: 'microsoft/wavlm-base-plus'
58
+ sr: 16000 # sampling rate of SLM
59
+ hidden: 768 # hidden size of SLM
60
+ nlayers: 13 # number of layers of SLM
61
+ initial_channel: 64 # initial channels of SLM discriminator head
62
+
63
+ # style diffusion model config
64
+ diffusion:
65
+ embedding_mask_proba: 0.1
66
+ # transformer config
67
+ transformer:
68
+ num_layers: 3
69
+ num_heads: 8
70
+ head_features: 64
71
+ multiplier: 2
72
+
73
+ # diffusion distribution config
74
+ dist:
75
+ sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
76
+ estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
77
+ mean: -3.0
78
+ std: 1.0
79
+
80
+ loss_params:
81
+ lambda_mel: 5. # mel reconstruction loss
82
+ lambda_gen: 1. # generator loss
83
+ lambda_slm: 1. # slm feature matching loss
84
+
85
+ lambda_mono: 1. # monotonic alignment loss (TMA)
86
+ lambda_s2s: 1. # sequence-to-sequence loss (TMA)
87
+
88
+ lambda_F0: 1. # F0 reconstruction loss
89
+ lambda_norm: 1. # norm reconstruction loss
90
+ lambda_dur: 1. # duration loss
91
+ lambda_ce: 20. # duration predictor probability output CE loss
92
+ lambda_sty: 1. # style reconstruction loss
93
+ lambda_diff: 1. # score matching loss
94
+
95
+ diff_epoch: 10 # style diffusion starting epoch
96
+ joint_epoch: 30 # joint training starting epoch
97
+
98
+ optimizer_params:
99
+ lr: 0.0001 # general learning rate
100
+ bert_lr: 0.00001 # learning rate for PLBERT
101
+ ft_lr: 0.0001 # learning rate for acoustic modules
102
+
103
+ slmadv_params:
104
+ min_len: 400 # minimum length of samples
105
+ max_len: 500 # maximum length of samples
106
+ batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
107
+ iter: 10 # update the discriminator every this iterations of generator update
108
+ thresh: 5 # gradient norm above which the gradient is scaled
109
+ scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
110
+ sig: 1.5 # sigma for differentiable duration modeling
111
+
Configs/config_libritts.yml ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "Models/LibriTTS"
2
+ first_stage_path: "first_stage.pth"
3
+ save_freq: 1
4
+ log_interval: 10
5
+ device: "cuda"
6
+ epochs_1st: 50 # number of epochs for first stage training (pre-training)
7
+ epochs_2nd: 30 # number of peochs for second stage training (joint training)
8
+ batch_size: 16
9
+ max_len: 300 # maximum number of frames
10
+ pretrained_model: ""
11
+ second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
12
+ load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters
13
+
14
+ F0_path: "Utils/JDC/bst.t7"
15
+ ASR_config: "Utils/ASR/config.yml"
16
+ ASR_path: "Utils/ASR/epoch_00080.pth"
17
+ PLBERT_dir: 'Utils/PLBERT/'
18
+
19
+ data_params:
20
+ train_data: "Data/train_list.txt"
21
+ val_data: "Data/val_list.txt"
22
+ root_path: ""
23
+ OOD_data: "Data/OOD_texts.txt"
24
+ min_length: 50 # sample until texts with this size are obtained for OOD texts
25
+
26
+ preprocess_params:
27
+ sr: 24000
28
+ spect_params:
29
+ n_fft: 2048
30
+ win_length: 1200
31
+ hop_length: 300
32
+
33
+ model_params:
34
+ multispeaker: true
35
+
36
+ dim_in: 64
37
+ hidden_dim: 512
38
+ max_conv_dim: 512
39
+ n_layer: 3
40
+ n_mels: 80
41
+
42
+ n_token: 178 # number of phoneme tokens
43
+ max_dur: 50 # maximum duration of a single phoneme
44
+ style_dim: 128 # style vector size
45
+
46
+ dropout: 0.2
47
+
48
+ # config for decoder
49
+ decoder:
50
+ type: 'hifigan' # either hifigan or istftnet
51
+ resblock_kernel_sizes: [3,7,11]
52
+ upsample_rates : [10,5,3,2]
53
+ upsample_initial_channel: 512
54
+ resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
55
+ upsample_kernel_sizes: [20,10,6,4]
56
+
57
+ # speech language model config
58
+ slm:
59
+ model: 'microsoft/wavlm-base-plus'
60
+ sr: 16000 # sampling rate of SLM
61
+ hidden: 768 # hidden size of SLM
62
+ nlayers: 13 # number of layers of SLM
63
+ initial_channel: 64 # initial channels of SLM discriminator head
64
+
65
+ # style diffusion model config
66
+ diffusion:
67
+ embedding_mask_proba: 0.1
68
+ # transformer config
69
+ transformer:
70
+ num_layers: 3
71
+ num_heads: 8
72
+ head_features: 64
73
+ multiplier: 2
74
+
75
+ # diffusion distribution config
76
+ dist:
77
+ sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
78
+ estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
79
+ mean: -3.0
80
+ std: 1.0
81
+
82
+ loss_params:
83
+ lambda_mel: 5. # mel reconstruction loss
84
+ lambda_gen: 1. # generator loss
85
+ lambda_slm: 1. # slm feature matching loss
86
+
87
+ lambda_mono: 1. # monotonic alignment loss (1st stage, TMA)
88
+ lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA)
89
+ TMA_epoch: 5 # TMA starting epoch (1st stage)
90
+
91
+ lambda_F0: 1. # F0 reconstruction loss (2nd stage)
92
+ lambda_norm: 1. # norm reconstruction loss (2nd stage)
93
+ lambda_dur: 1. # duration loss (2nd stage)
94
+ lambda_ce: 20. # duration predictor probability output CE loss (2nd stage)
95
+ lambda_sty: 1. # style reconstruction loss (2nd stage)
96
+ lambda_diff: 1. # score matching loss (2nd stage)
97
+
98
+ diff_epoch: 10 # style diffusion starting epoch (2nd stage)
99
+ joint_epoch: 15 # joint training starting epoch (2nd stage)
100
+
101
+ optimizer_params:
102
+ lr: 0.0001 # general learning rate
103
+ bert_lr: 0.00001 # learning rate for PLBERT
104
+ ft_lr: 0.00001 # learning rate for acoustic modules
105
+
106
+ slmadv_params:
107
+ min_len: 400 # minimum length of samples
108
+ max_len: 500 # maximum length of samples
109
+ batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
110
+ iter: 20 # update the discriminator every this iterations of generator update
111
+ thresh: 5 # gradient norm above which the gradient is scaled
112
+ scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
113
+ sig: 1.5 # sigma for differentiable duration modeling
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 Aaron (Yinghao) Li
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
Modules/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
Modules/diffusion/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
Modules/diffusion/diffusion.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import pi
2
+ from random import randint
3
+ from typing import Any, Optional, Sequence, Tuple, Union
4
+
5
+ import torch
6
+ from einops import rearrange
7
+ from torch import Tensor, nn
8
+ from tqdm import tqdm
9
+
10
+ from .utils import *
11
+ from .sampler import *
12
+
13
+ """
14
+ Diffusion Classes (generic for 1d data)
15
+ """
16
+
17
+
18
+ class Model1d(nn.Module):
19
+ def __init__(self, unet_type: str = "base", **kwargs):
20
+ super().__init__()
21
+ diffusion_kwargs, kwargs = groupby("diffusion_", kwargs)
22
+ self.unet = None
23
+ self.diffusion = None
24
+
25
+ def forward(self, x: Tensor, **kwargs) -> Tensor:
26
+ return self.diffusion(x, **kwargs)
27
+
28
+ def sample(self, *args, **kwargs) -> Tensor:
29
+ return self.diffusion.sample(*args, **kwargs)
30
+
31
+
32
+ """
33
+ Audio Diffusion Classes (specific for 1d audio data)
34
+ """
35
+
36
+
37
+ def get_default_model_kwargs():
38
+ return dict(
39
+ channels=128,
40
+ patch_size=16,
41
+ multipliers=[1, 2, 4, 4, 4, 4, 4],
42
+ factors=[4, 4, 4, 2, 2, 2],
43
+ num_blocks=[2, 2, 2, 2, 2, 2],
44
+ attentions=[0, 0, 0, 1, 1, 1, 1],
45
+ attention_heads=8,
46
+ attention_features=64,
47
+ attention_multiplier=2,
48
+ attention_use_rel_pos=False,
49
+ diffusion_type="v",
50
+ diffusion_sigma_distribution=UniformDistribution(),
51
+ )
52
+
53
+
54
+ def get_default_sampling_kwargs():
55
+ return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True)
56
+
57
+
58
+ class AudioDiffusionModel(Model1d):
59
+ def __init__(self, **kwargs):
60
+ super().__init__(**{**get_default_model_kwargs(), **kwargs})
61
+
62
+ def sample(self, *args, **kwargs):
63
+ return super().sample(*args, **{**get_default_sampling_kwargs(), **kwargs})
64
+
65
+
66
+ class AudioDiffusionConditional(Model1d):
67
+ def __init__(
68
+ self,
69
+ embedding_features: int,
70
+ embedding_max_length: int,
71
+ embedding_mask_proba: float = 0.1,
72
+ **kwargs,
73
+ ):
74
+ self.embedding_mask_proba = embedding_mask_proba
75
+ default_kwargs = dict(
76
+ **get_default_model_kwargs(),
77
+ unet_type="cfg",
78
+ context_embedding_features=embedding_features,
79
+ context_embedding_max_length=embedding_max_length,
80
+ )
81
+ super().__init__(**{**default_kwargs, **kwargs})
82
+
83
+ def forward(self, *args, **kwargs):
84
+ default_kwargs = dict(embedding_mask_proba=self.embedding_mask_proba)
85
+ return super().forward(*args, **{**default_kwargs, **kwargs})
86
+
87
+ def sample(self, *args, **kwargs):
88
+ default_kwargs = dict(
89
+ **get_default_sampling_kwargs(),
90
+ embedding_scale=5.0,
91
+ )
92
+ return super().sample(*args, **{**default_kwargs, **kwargs})
93
+
94
+
Modules/diffusion/modules.py ADDED
@@ -0,0 +1,693 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import floor, log, pi
2
+ from typing import Any, List, Optional, Sequence, Tuple, Union
3
+
4
+ from .utils import *
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from einops import rearrange, reduce, repeat
9
+ from einops.layers.torch import Rearrange
10
+ from einops_exts import rearrange_many
11
+ from torch import Tensor, einsum
12
+
13
+
14
+ """
15
+ Utils
16
+ """
17
+
18
+ class AdaLayerNorm(nn.Module):
19
+ def __init__(self, style_dim, channels, eps=1e-5):
20
+ super().__init__()
21
+ self.channels = channels
22
+ self.eps = eps
23
+
24
+ self.fc = nn.Linear(style_dim, channels*2)
25
+
26
+ def forward(self, x, s):
27
+ x = x.transpose(-1, -2)
28
+ x = x.transpose(1, -1)
29
+
30
+ h = self.fc(s)
31
+ h = h.view(h.size(0), h.size(1), 1)
32
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
33
+ gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
34
+
35
+
36
+ x = F.layer_norm(x, (self.channels,), eps=self.eps)
37
+ x = (1 + gamma) * x + beta
38
+ return x.transpose(1, -1).transpose(-1, -2)
39
+
40
+ class StyleTransformer1d(nn.Module):
41
+ def __init__(
42
+ self,
43
+ num_layers: int,
44
+ channels: int,
45
+ num_heads: int,
46
+ head_features: int,
47
+ multiplier: int,
48
+ use_context_time: bool = True,
49
+ use_rel_pos: bool = False,
50
+ context_features_multiplier: int = 1,
51
+ rel_pos_num_buckets: Optional[int] = None,
52
+ rel_pos_max_distance: Optional[int] = None,
53
+ context_features: Optional[int] = None,
54
+ context_embedding_features: Optional[int] = None,
55
+ embedding_max_length: int = 512,
56
+ ):
57
+ super().__init__()
58
+
59
+ self.blocks = nn.ModuleList(
60
+ [
61
+ StyleTransformerBlock(
62
+ features=channels + context_embedding_features,
63
+ head_features=head_features,
64
+ num_heads=num_heads,
65
+ multiplier=multiplier,
66
+ style_dim=context_features,
67
+ use_rel_pos=use_rel_pos,
68
+ rel_pos_num_buckets=rel_pos_num_buckets,
69
+ rel_pos_max_distance=rel_pos_max_distance,
70
+ )
71
+ for i in range(num_layers)
72
+ ]
73
+ )
74
+
75
+ self.to_out = nn.Sequential(
76
+ Rearrange("b t c -> b c t"),
77
+ nn.Conv1d(
78
+ in_channels=channels + context_embedding_features,
79
+ out_channels=channels,
80
+ kernel_size=1,
81
+ ),
82
+ )
83
+
84
+ use_context_features = exists(context_features)
85
+ self.use_context_features = use_context_features
86
+ self.use_context_time = use_context_time
87
+
88
+ if use_context_time or use_context_features:
89
+ context_mapping_features = channels + context_embedding_features
90
+
91
+ self.to_mapping = nn.Sequential(
92
+ nn.Linear(context_mapping_features, context_mapping_features),
93
+ nn.GELU(),
94
+ nn.Linear(context_mapping_features, context_mapping_features),
95
+ nn.GELU(),
96
+ )
97
+
98
+ if use_context_time:
99
+ assert exists(context_mapping_features)
100
+ self.to_time = nn.Sequential(
101
+ TimePositionalEmbedding(
102
+ dim=channels, out_features=context_mapping_features
103
+ ),
104
+ nn.GELU(),
105
+ )
106
+
107
+ if use_context_features:
108
+ assert exists(context_features) and exists(context_mapping_features)
109
+ self.to_features = nn.Sequential(
110
+ nn.Linear(
111
+ in_features=context_features, out_features=context_mapping_features
112
+ ),
113
+ nn.GELU(),
114
+ )
115
+
116
+ self.fixed_embedding = FixedEmbedding(
117
+ max_length=embedding_max_length, features=context_embedding_features
118
+ )
119
+
120
+
121
+ def get_mapping(
122
+ self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
123
+ ) -> Optional[Tensor]:
124
+ """Combines context time features and features into mapping"""
125
+ items, mapping = [], None
126
+ # Compute time features
127
+ if self.use_context_time:
128
+ assert_message = "use_context_time=True but no time features provided"
129
+ assert exists(time), assert_message
130
+ items += [self.to_time(time)]
131
+ # Compute features
132
+ if self.use_context_features:
133
+ assert_message = "context_features exists but no features provided"
134
+ assert exists(features), assert_message
135
+ items += [self.to_features(features)]
136
+
137
+ # Compute joint mapping
138
+ if self.use_context_time or self.use_context_features:
139
+ mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
140
+ mapping = self.to_mapping(mapping)
141
+
142
+ return mapping
143
+
144
+ def run(self, x, time, embedding, features):
145
+
146
+ mapping = self.get_mapping(time, features)
147
+ x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
148
+ mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
149
+
150
+ for block in self.blocks:
151
+ x = x + mapping
152
+ x = block(x, features)
153
+
154
+ x = x.mean(axis=1).unsqueeze(1)
155
+ x = self.to_out(x)
156
+ x = x.transpose(-1, -2)
157
+
158
+ return x
159
+
160
+ def forward(self, x: Tensor,
161
+ time: Tensor,
162
+ embedding_mask_proba: float = 0.0,
163
+ embedding: Optional[Tensor] = None,
164
+ features: Optional[Tensor] = None,
165
+ embedding_scale: float = 1.0) -> Tensor:
166
+
167
+ b, device = embedding.shape[0], embedding.device
168
+ fixed_embedding = self.fixed_embedding(embedding)
169
+ if embedding_mask_proba > 0.0:
170
+ # Randomly mask embedding
171
+ batch_mask = rand_bool(
172
+ shape=(b, 1, 1), proba=embedding_mask_proba, device=device
173
+ )
174
+ embedding = torch.where(batch_mask, fixed_embedding, embedding)
175
+
176
+ if embedding_scale != 1.0:
177
+ # Compute both normal and fixed embedding outputs
178
+ out = self.run(x, time, embedding=embedding, features=features)
179
+ out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
180
+ # Scale conditional output using classifier-free guidance
181
+ return out_masked + (out - out_masked) * embedding_scale
182
+ else:
183
+ return self.run(x, time, embedding=embedding, features=features)
184
+
185
+ return x
186
+
187
+
188
+ class StyleTransformerBlock(nn.Module):
189
+ def __init__(
190
+ self,
191
+ features: int,
192
+ num_heads: int,
193
+ head_features: int,
194
+ style_dim: int,
195
+ multiplier: int,
196
+ use_rel_pos: bool,
197
+ rel_pos_num_buckets: Optional[int] = None,
198
+ rel_pos_max_distance: Optional[int] = None,
199
+ context_features: Optional[int] = None,
200
+ ):
201
+ super().__init__()
202
+
203
+ self.use_cross_attention = exists(context_features) and context_features > 0
204
+
205
+ self.attention = StyleAttention(
206
+ features=features,
207
+ style_dim=style_dim,
208
+ num_heads=num_heads,
209
+ head_features=head_features,
210
+ use_rel_pos=use_rel_pos,
211
+ rel_pos_num_buckets=rel_pos_num_buckets,
212
+ rel_pos_max_distance=rel_pos_max_distance,
213
+ )
214
+
215
+ if self.use_cross_attention:
216
+ self.cross_attention = StyleAttention(
217
+ features=features,
218
+ style_dim=style_dim,
219
+ num_heads=num_heads,
220
+ head_features=head_features,
221
+ context_features=context_features,
222
+ use_rel_pos=use_rel_pos,
223
+ rel_pos_num_buckets=rel_pos_num_buckets,
224
+ rel_pos_max_distance=rel_pos_max_distance,
225
+ )
226
+
227
+ self.feed_forward = FeedForward(features=features, multiplier=multiplier)
228
+
229
+ def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
230
+ x = self.attention(x, s) + x
231
+ if self.use_cross_attention:
232
+ x = self.cross_attention(x, s, context=context) + x
233
+ x = self.feed_forward(x) + x
234
+ return x
235
+
236
+ class StyleAttention(nn.Module):
237
+ def __init__(
238
+ self,
239
+ features: int,
240
+ *,
241
+ style_dim: int,
242
+ head_features: int,
243
+ num_heads: int,
244
+ context_features: Optional[int] = None,
245
+ use_rel_pos: bool,
246
+ rel_pos_num_buckets: Optional[int] = None,
247
+ rel_pos_max_distance: Optional[int] = None,
248
+ ):
249
+ super().__init__()
250
+ self.context_features = context_features
251
+ mid_features = head_features * num_heads
252
+ context_features = default(context_features, features)
253
+
254
+ self.norm = AdaLayerNorm(style_dim, features)
255
+ self.norm_context = AdaLayerNorm(style_dim, context_features)
256
+ self.to_q = nn.Linear(
257
+ in_features=features, out_features=mid_features, bias=False
258
+ )
259
+ self.to_kv = nn.Linear(
260
+ in_features=context_features, out_features=mid_features * 2, bias=False
261
+ )
262
+ self.attention = AttentionBase(
263
+ features,
264
+ num_heads=num_heads,
265
+ head_features=head_features,
266
+ use_rel_pos=use_rel_pos,
267
+ rel_pos_num_buckets=rel_pos_num_buckets,
268
+ rel_pos_max_distance=rel_pos_max_distance,
269
+ )
270
+
271
+ def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
272
+ assert_message = "You must provide a context when using context_features"
273
+ assert not self.context_features or exists(context), assert_message
274
+ # Use context if provided
275
+ context = default(context, x)
276
+ # Normalize then compute q from input and k,v from context
277
+ x, context = self.norm(x, s), self.norm_context(context, s)
278
+
279
+ q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
280
+ # Compute and return attention
281
+ return self.attention(q, k, v)
282
+
283
+ class Transformer1d(nn.Module):
284
+ def __init__(
285
+ self,
286
+ num_layers: int,
287
+ channels: int,
288
+ num_heads: int,
289
+ head_features: int,
290
+ multiplier: int,
291
+ use_context_time: bool = True,
292
+ use_rel_pos: bool = False,
293
+ context_features_multiplier: int = 1,
294
+ rel_pos_num_buckets: Optional[int] = None,
295
+ rel_pos_max_distance: Optional[int] = None,
296
+ context_features: Optional[int] = None,
297
+ context_embedding_features: Optional[int] = None,
298
+ embedding_max_length: int = 512,
299
+ ):
300
+ super().__init__()
301
+
302
+ self.blocks = nn.ModuleList(
303
+ [
304
+ TransformerBlock(
305
+ features=channels + context_embedding_features,
306
+ head_features=head_features,
307
+ num_heads=num_heads,
308
+ multiplier=multiplier,
309
+ use_rel_pos=use_rel_pos,
310
+ rel_pos_num_buckets=rel_pos_num_buckets,
311
+ rel_pos_max_distance=rel_pos_max_distance,
312
+ )
313
+ for i in range(num_layers)
314
+ ]
315
+ )
316
+
317
+ self.to_out = nn.Sequential(
318
+ Rearrange("b t c -> b c t"),
319
+ nn.Conv1d(
320
+ in_channels=channels + context_embedding_features,
321
+ out_channels=channels,
322
+ kernel_size=1,
323
+ ),
324
+ )
325
+
326
+ use_context_features = exists(context_features)
327
+ self.use_context_features = use_context_features
328
+ self.use_context_time = use_context_time
329
+
330
+ if use_context_time or use_context_features:
331
+ context_mapping_features = channels + context_embedding_features
332
+
333
+ self.to_mapping = nn.Sequential(
334
+ nn.Linear(context_mapping_features, context_mapping_features),
335
+ nn.GELU(),
336
+ nn.Linear(context_mapping_features, context_mapping_features),
337
+ nn.GELU(),
338
+ )
339
+
340
+ if use_context_time:
341
+ assert exists(context_mapping_features)
342
+ self.to_time = nn.Sequential(
343
+ TimePositionalEmbedding(
344
+ dim=channels, out_features=context_mapping_features
345
+ ),
346
+ nn.GELU(),
347
+ )
348
+
349
+ if use_context_features:
350
+ assert exists(context_features) and exists(context_mapping_features)
351
+ self.to_features = nn.Sequential(
352
+ nn.Linear(
353
+ in_features=context_features, out_features=context_mapping_features
354
+ ),
355
+ nn.GELU(),
356
+ )
357
+
358
+ self.fixed_embedding = FixedEmbedding(
359
+ max_length=embedding_max_length, features=context_embedding_features
360
+ )
361
+
362
+
363
+ def get_mapping(
364
+ self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
365
+ ) -> Optional[Tensor]:
366
+ """Combines context time features and features into mapping"""
367
+ items, mapping = [], None
368
+ # Compute time features
369
+ if self.use_context_time:
370
+ assert_message = "use_context_time=True but no time features provided"
371
+ assert exists(time), assert_message
372
+ items += [self.to_time(time)]
373
+ # Compute features
374
+ if self.use_context_features:
375
+ assert_message = "context_features exists but no features provided"
376
+ assert exists(features), assert_message
377
+ items += [self.to_features(features)]
378
+
379
+ # Compute joint mapping
380
+ if self.use_context_time or self.use_context_features:
381
+ mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
382
+ mapping = self.to_mapping(mapping)
383
+
384
+ return mapping
385
+
386
+ def run(self, x, time, embedding, features):
387
+
388
+ mapping = self.get_mapping(time, features)
389
+ x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
390
+ mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
391
+
392
+ for block in self.blocks:
393
+ x = x + mapping
394
+ x = block(x)
395
+
396
+ x = x.mean(axis=1).unsqueeze(1)
397
+ x = self.to_out(x)
398
+ x = x.transpose(-1, -2)
399
+
400
+ return x
401
+
402
+ def forward(self, x: Tensor,
403
+ time: Tensor,
404
+ embedding_mask_proba: float = 0.0,
405
+ embedding: Optional[Tensor] = None,
406
+ features: Optional[Tensor] = None,
407
+ embedding_scale: float = 1.0) -> Tensor:
408
+
409
+ b, device = embedding.shape[0], embedding.device
410
+ fixed_embedding = self.fixed_embedding(embedding)
411
+ if embedding_mask_proba > 0.0:
412
+ # Randomly mask embedding
413
+ batch_mask = rand_bool(
414
+ shape=(b, 1, 1), proba=embedding_mask_proba, device=device
415
+ )
416
+ embedding = torch.where(batch_mask, fixed_embedding, embedding)
417
+
418
+ if embedding_scale != 1.0:
419
+ # Compute both normal and fixed embedding outputs
420
+ out = self.run(x, time, embedding=embedding, features=features)
421
+ out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
422
+ # Scale conditional output using classifier-free guidance
423
+ return out_masked + (out - out_masked) * embedding_scale
424
+ else:
425
+ return self.run(x, time, embedding=embedding, features=features)
426
+
427
+ return x
428
+
429
+
430
+ """
431
+ Attention Components
432
+ """
433
+
434
+
435
+ class RelativePositionBias(nn.Module):
436
+ def __init__(self, num_buckets: int, max_distance: int, num_heads: int):
437
+ super().__init__()
438
+ self.num_buckets = num_buckets
439
+ self.max_distance = max_distance
440
+ self.num_heads = num_heads
441
+ self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
442
+
443
+ @staticmethod
444
+ def _relative_position_bucket(
445
+ relative_position: Tensor, num_buckets: int, max_distance: int
446
+ ):
447
+ num_buckets //= 2
448
+ ret = (relative_position >= 0).to(torch.long) * num_buckets
449
+ n = torch.abs(relative_position)
450
+
451
+ max_exact = num_buckets // 2
452
+ is_small = n < max_exact
453
+
454
+ val_if_large = (
455
+ max_exact
456
+ + (
457
+ torch.log(n.float() / max_exact)
458
+ / log(max_distance / max_exact)
459
+ * (num_buckets - max_exact)
460
+ ).long()
461
+ )
462
+ val_if_large = torch.min(
463
+ val_if_large, torch.full_like(val_if_large, num_buckets - 1)
464
+ )
465
+
466
+ ret += torch.where(is_small, n, val_if_large)
467
+ return ret
468
+
469
+ def forward(self, num_queries: int, num_keys: int) -> Tensor:
470
+ i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device
471
+ q_pos = torch.arange(j - i, j, dtype=torch.long, device=device)
472
+ k_pos = torch.arange(j, dtype=torch.long, device=device)
473
+ rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1")
474
+
475
+ relative_position_bucket = self._relative_position_bucket(
476
+ rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance
477
+ )
478
+
479
+ bias = self.relative_attention_bias(relative_position_bucket)
480
+ bias = rearrange(bias, "m n h -> 1 h m n")
481
+ return bias
482
+
483
+
484
+ def FeedForward(features: int, multiplier: int) -> nn.Module:
485
+ mid_features = features * multiplier
486
+ return nn.Sequential(
487
+ nn.Linear(in_features=features, out_features=mid_features),
488
+ nn.GELU(),
489
+ nn.Linear(in_features=mid_features, out_features=features),
490
+ )
491
+
492
+
493
+ class AttentionBase(nn.Module):
494
+ def __init__(
495
+ self,
496
+ features: int,
497
+ *,
498
+ head_features: int,
499
+ num_heads: int,
500
+ use_rel_pos: bool,
501
+ out_features: Optional[int] = None,
502
+ rel_pos_num_buckets: Optional[int] = None,
503
+ rel_pos_max_distance: Optional[int] = None,
504
+ ):
505
+ super().__init__()
506
+ self.scale = head_features ** -0.5
507
+ self.num_heads = num_heads
508
+ self.use_rel_pos = use_rel_pos
509
+ mid_features = head_features * num_heads
510
+
511
+ if use_rel_pos:
512
+ assert exists(rel_pos_num_buckets) and exists(rel_pos_max_distance)
513
+ self.rel_pos = RelativePositionBias(
514
+ num_buckets=rel_pos_num_buckets,
515
+ max_distance=rel_pos_max_distance,
516
+ num_heads=num_heads,
517
+ )
518
+ if out_features is None:
519
+ out_features = features
520
+
521
+ self.to_out = nn.Linear(in_features=mid_features, out_features=out_features)
522
+
523
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
524
+ # Split heads
525
+ q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
526
+ # Compute similarity matrix
527
+ sim = einsum("... n d, ... m d -> ... n m", q, k)
528
+ sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim
529
+ sim = sim * self.scale
530
+ # Get attention matrix with softmax
531
+ attn = sim.softmax(dim=-1)
532
+ # Compute values
533
+ out = einsum("... n m, ... m d -> ... n d", attn, v)
534
+ out = rearrange(out, "b h n d -> b n (h d)")
535
+ return self.to_out(out)
536
+
537
+
538
+ class Attention(nn.Module):
539
+ def __init__(
540
+ self,
541
+ features: int,
542
+ *,
543
+ head_features: int,
544
+ num_heads: int,
545
+ out_features: Optional[int] = None,
546
+ context_features: Optional[int] = None,
547
+ use_rel_pos: bool,
548
+ rel_pos_num_buckets: Optional[int] = None,
549
+ rel_pos_max_distance: Optional[int] = None,
550
+ ):
551
+ super().__init__()
552
+ self.context_features = context_features
553
+ mid_features = head_features * num_heads
554
+ context_features = default(context_features, features)
555
+
556
+ self.norm = nn.LayerNorm(features)
557
+ self.norm_context = nn.LayerNorm(context_features)
558
+ self.to_q = nn.Linear(
559
+ in_features=features, out_features=mid_features, bias=False
560
+ )
561
+ self.to_kv = nn.Linear(
562
+ in_features=context_features, out_features=mid_features * 2, bias=False
563
+ )
564
+
565
+ self.attention = AttentionBase(
566
+ features,
567
+ out_features=out_features,
568
+ num_heads=num_heads,
569
+ head_features=head_features,
570
+ use_rel_pos=use_rel_pos,
571
+ rel_pos_num_buckets=rel_pos_num_buckets,
572
+ rel_pos_max_distance=rel_pos_max_distance,
573
+ )
574
+
575
+ def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
576
+ assert_message = "You must provide a context when using context_features"
577
+ assert not self.context_features or exists(context), assert_message
578
+ # Use context if provided
579
+ context = default(context, x)
580
+ # Normalize then compute q from input and k,v from context
581
+ x, context = self.norm(x), self.norm_context(context)
582
+ q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
583
+ # Compute and return attention
584
+ return self.attention(q, k, v)
585
+
586
+
587
+ """
588
+ Transformer Blocks
589
+ """
590
+
591
+
592
+ class TransformerBlock(nn.Module):
593
+ def __init__(
594
+ self,
595
+ features: int,
596
+ num_heads: int,
597
+ head_features: int,
598
+ multiplier: int,
599
+ use_rel_pos: bool,
600
+ rel_pos_num_buckets: Optional[int] = None,
601
+ rel_pos_max_distance: Optional[int] = None,
602
+ context_features: Optional[int] = None,
603
+ ):
604
+ super().__init__()
605
+
606
+ self.use_cross_attention = exists(context_features) and context_features > 0
607
+
608
+ self.attention = Attention(
609
+ features=features,
610
+ num_heads=num_heads,
611
+ head_features=head_features,
612
+ use_rel_pos=use_rel_pos,
613
+ rel_pos_num_buckets=rel_pos_num_buckets,
614
+ rel_pos_max_distance=rel_pos_max_distance,
615
+ )
616
+
617
+ if self.use_cross_attention:
618
+ self.cross_attention = Attention(
619
+ features=features,
620
+ num_heads=num_heads,
621
+ head_features=head_features,
622
+ context_features=context_features,
623
+ use_rel_pos=use_rel_pos,
624
+ rel_pos_num_buckets=rel_pos_num_buckets,
625
+ rel_pos_max_distance=rel_pos_max_distance,
626
+ )
627
+
628
+ self.feed_forward = FeedForward(features=features, multiplier=multiplier)
629
+
630
+ def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
631
+ x = self.attention(x) + x
632
+ if self.use_cross_attention:
633
+ x = self.cross_attention(x, context=context) + x
634
+ x = self.feed_forward(x) + x
635
+ return x
636
+
637
+
638
+
639
+ """
640
+ Time Embeddings
641
+ """
642
+
643
+
644
+ class SinusoidalEmbedding(nn.Module):
645
+ def __init__(self, dim: int):
646
+ super().__init__()
647
+ self.dim = dim
648
+
649
+ def forward(self, x: Tensor) -> Tensor:
650
+ device, half_dim = x.device, self.dim // 2
651
+ emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
652
+ emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
653
+ emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
654
+ return torch.cat((emb.sin(), emb.cos()), dim=-1)
655
+
656
+
657
+ class LearnedPositionalEmbedding(nn.Module):
658
+ """Used for continuous time"""
659
+
660
+ def __init__(self, dim: int):
661
+ super().__init__()
662
+ assert (dim % 2) == 0
663
+ half_dim = dim // 2
664
+ self.weights = nn.Parameter(torch.randn(half_dim))
665
+
666
+ def forward(self, x: Tensor) -> Tensor:
667
+ x = rearrange(x, "b -> b 1")
668
+ freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
669
+ fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
670
+ fouriered = torch.cat((x, fouriered), dim=-1)
671
+ return fouriered
672
+
673
+
674
+ def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
675
+ return nn.Sequential(
676
+ LearnedPositionalEmbedding(dim),
677
+ nn.Linear(in_features=dim + 1, out_features=out_features),
678
+ )
679
+
680
+ class FixedEmbedding(nn.Module):
681
+ def __init__(self, max_length: int, features: int):
682
+ super().__init__()
683
+ self.max_length = max_length
684
+ self.embedding = nn.Embedding(max_length, features)
685
+
686
+ def forward(self, x: Tensor) -> Tensor:
687
+ batch_size, length, device = *x.shape[0:2], x.device
688
+ assert_message = "Input sequence length must be <= max_length"
689
+ assert length <= self.max_length, assert_message
690
+ position = torch.arange(length, device=device)
691
+ fixed_embedding = self.embedding(position)
692
+ fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size)
693
+ return fixed_embedding
Modules/diffusion/sampler.py ADDED
@@ -0,0 +1,691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import atan, cos, pi, sin, sqrt
2
+ from typing import Any, Callable, List, Optional, Tuple, Type
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from einops import rearrange, reduce
8
+ from torch import Tensor
9
+
10
+ from .utils import *
11
+
12
+ """
13
+ Diffusion Training
14
+ """
15
+
16
+ """ Distributions """
17
+
18
+
19
+ class Distribution:
20
+ def __call__(self, num_samples: int, device: torch.device):
21
+ raise NotImplementedError()
22
+
23
+
24
+ class LogNormalDistribution(Distribution):
25
+ def __init__(self, mean: float, std: float):
26
+ self.mean = mean
27
+ self.std = std
28
+
29
+ def __call__(
30
+ self, num_samples: int, device: torch.device = torch.device("cpu")
31
+ ) -> Tensor:
32
+ normal = self.mean + self.std * torch.randn((num_samples,), device=device)
33
+ return normal.exp()
34
+
35
+
36
+ class UniformDistribution(Distribution):
37
+ def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
38
+ return torch.rand(num_samples, device=device)
39
+
40
+
41
+ class VKDistribution(Distribution):
42
+ def __init__(
43
+ self,
44
+ min_value: float = 0.0,
45
+ max_value: float = float("inf"),
46
+ sigma_data: float = 1.0,
47
+ ):
48
+ self.min_value = min_value
49
+ self.max_value = max_value
50
+ self.sigma_data = sigma_data
51
+
52
+ def __call__(
53
+ self, num_samples: int, device: torch.device = torch.device("cpu")
54
+ ) -> Tensor:
55
+ sigma_data = self.sigma_data
56
+ min_cdf = atan(self.min_value / sigma_data) * 2 / pi
57
+ max_cdf = atan(self.max_value / sigma_data) * 2 / pi
58
+ u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf
59
+ return torch.tan(u * pi / 2) * sigma_data
60
+
61
+
62
+ """ Diffusion Classes """
63
+
64
+
65
+ def pad_dims(x: Tensor, ndim: int) -> Tensor:
66
+ # Pads additional ndims to the right of the tensor
67
+ return x.view(*x.shape, *((1,) * ndim))
68
+
69
+
70
+ def clip(x: Tensor, dynamic_threshold: float = 0.0):
71
+ if dynamic_threshold == 0.0:
72
+ return x.clamp(-1.0, 1.0)
73
+ else:
74
+ # Dynamic thresholding
75
+ # Find dynamic threshold quantile for each batch
76
+ x_flat = rearrange(x, "b ... -> b (...)")
77
+ scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
78
+ # Clamp to a min of 1.0
79
+ scale.clamp_(min=1.0)
80
+ # Clamp all values and scale
81
+ scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
82
+ x = x.clamp(-scale, scale) / scale
83
+ return x
84
+
85
+
86
+ def to_batch(
87
+ batch_size: int,
88
+ device: torch.device,
89
+ x: Optional[float] = None,
90
+ xs: Optional[Tensor] = None,
91
+ ) -> Tensor:
92
+ assert exists(x) ^ exists(xs), "Either x or xs must be provided"
93
+ # If x provided use the same for all batch items
94
+ if exists(x):
95
+ xs = torch.full(size=(batch_size,), fill_value=x).to(device)
96
+ assert exists(xs)
97
+ return xs
98
+
99
+
100
+ class Diffusion(nn.Module):
101
+
102
+ alias: str = ""
103
+
104
+ """Base diffusion class"""
105
+
106
+ def denoise_fn(
107
+ self,
108
+ x_noisy: Tensor,
109
+ sigmas: Optional[Tensor] = None,
110
+ sigma: Optional[float] = None,
111
+ **kwargs,
112
+ ) -> Tensor:
113
+ raise NotImplementedError("Diffusion class missing denoise_fn")
114
+
115
+ def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
116
+ raise NotImplementedError("Diffusion class missing forward function")
117
+
118
+
119
+ class VDiffusion(Diffusion):
120
+
121
+ alias = "v"
122
+
123
+ def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
124
+ super().__init__()
125
+ self.net = net
126
+ self.sigma_distribution = sigma_distribution
127
+
128
+ def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
129
+ angle = sigmas * pi / 2
130
+ alpha = torch.cos(angle)
131
+ beta = torch.sin(angle)
132
+ return alpha, beta
133
+
134
+ def denoise_fn(
135
+ self,
136
+ x_noisy: Tensor,
137
+ sigmas: Optional[Tensor] = None,
138
+ sigma: Optional[float] = None,
139
+ **kwargs,
140
+ ) -> Tensor:
141
+ batch_size, device = x_noisy.shape[0], x_noisy.device
142
+ sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
143
+ return self.net(x_noisy, sigmas, **kwargs)
144
+
145
+ def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
146
+ batch_size, device = x.shape[0], x.device
147
+
148
+ # Sample amount of noise to add for each batch element
149
+ sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
150
+ sigmas_padded = rearrange(sigmas, "b -> b 1 1")
151
+
152
+ # Get noise
153
+ noise = default(noise, lambda: torch.randn_like(x))
154
+
155
+ # Combine input and noise weighted by half-circle
156
+ alpha, beta = self.get_alpha_beta(sigmas_padded)
157
+ x_noisy = x * alpha + noise * beta
158
+ x_target = noise * alpha - x * beta
159
+
160
+ # Denoise and return loss
161
+ x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs)
162
+ return F.mse_loss(x_denoised, x_target)
163
+
164
+
165
+ class KDiffusion(Diffusion):
166
+ """Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
167
+
168
+ alias = "k"
169
+
170
+ def __init__(
171
+ self,
172
+ net: nn.Module,
173
+ *,
174
+ sigma_distribution: Distribution,
175
+ sigma_data: float, # data distribution standard deviation
176
+ dynamic_threshold: float = 0.0,
177
+ ):
178
+ super().__init__()
179
+ self.net = net
180
+ self.sigma_data = sigma_data
181
+ self.sigma_distribution = sigma_distribution
182
+ self.dynamic_threshold = dynamic_threshold
183
+
184
+ def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
185
+ sigma_data = self.sigma_data
186
+ c_noise = torch.log(sigmas) * 0.25
187
+ sigmas = rearrange(sigmas, "b -> b 1 1")
188
+ c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
189
+ c_out = sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
190
+ c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
191
+ return c_skip, c_out, c_in, c_noise
192
+
193
+ def denoise_fn(
194
+ self,
195
+ x_noisy: Tensor,
196
+ sigmas: Optional[Tensor] = None,
197
+ sigma: Optional[float] = None,
198
+ **kwargs,
199
+ ) -> Tensor:
200
+ batch_size, device = x_noisy.shape[0], x_noisy.device
201
+ sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
202
+
203
+ # Predict network output and add skip connection
204
+ c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
205
+ x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
206
+ x_denoised = c_skip * x_noisy + c_out * x_pred
207
+
208
+ return x_denoised
209
+
210
+ def loss_weight(self, sigmas: Tensor) -> Tensor:
211
+ # Computes weight depending on data distribution
212
+ return (sigmas ** 2 + self.sigma_data ** 2) * (sigmas * self.sigma_data) ** -2
213
+
214
+ def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
215
+ batch_size, device = x.shape[0], x.device
216
+ from einops import rearrange, reduce
217
+
218
+ # Sample amount of noise to add for each batch element
219
+ sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
220
+ sigmas_padded = rearrange(sigmas, "b -> b 1 1")
221
+
222
+ # Add noise to input
223
+ noise = default(noise, lambda: torch.randn_like(x))
224
+ x_noisy = x + sigmas_padded * noise
225
+
226
+ # Compute denoised values
227
+ x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs)
228
+
229
+ # Compute weighted loss
230
+ losses = F.mse_loss(x_denoised, x, reduction="none")
231
+ losses = reduce(losses, "b ... -> b", "mean")
232
+ losses = losses * self.loss_weight(sigmas)
233
+ loss = losses.mean()
234
+ return loss
235
+
236
+
237
+ class VKDiffusion(Diffusion):
238
+
239
+ alias = "vk"
240
+
241
+ def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
242
+ super().__init__()
243
+ self.net = net
244
+ self.sigma_distribution = sigma_distribution
245
+
246
+ def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
247
+ sigma_data = 1.0
248
+ sigmas = rearrange(sigmas, "b -> b 1 1")
249
+ c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
250
+ c_out = -sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
251
+ c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
252
+ return c_skip, c_out, c_in
253
+
254
+ def sigma_to_t(self, sigmas: Tensor) -> Tensor:
255
+ return sigmas.atan() / pi * 2
256
+
257
+ def t_to_sigma(self, t: Tensor) -> Tensor:
258
+ return (t * pi / 2).tan()
259
+
260
+ def denoise_fn(
261
+ self,
262
+ x_noisy: Tensor,
263
+ sigmas: Optional[Tensor] = None,
264
+ sigma: Optional[float] = None,
265
+ **kwargs,
266
+ ) -> Tensor:
267
+ batch_size, device = x_noisy.shape[0], x_noisy.device
268
+ sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
269
+
270
+ # Predict network output and add skip connection
271
+ c_skip, c_out, c_in = self.get_scale_weights(sigmas)
272
+ x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
273
+ x_denoised = c_skip * x_noisy + c_out * x_pred
274
+ return x_denoised
275
+
276
+ def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
277
+ batch_size, device = x.shape[0], x.device
278
+
279
+ # Sample amount of noise to add for each batch element
280
+ sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
281
+ sigmas_padded = rearrange(sigmas, "b -> b 1 1")
282
+
283
+ # Add noise to input
284
+ noise = default(noise, lambda: torch.randn_like(x))
285
+ x_noisy = x + sigmas_padded * noise
286
+
287
+ # Compute model output
288
+ c_skip, c_out, c_in = self.get_scale_weights(sigmas)
289
+ x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
290
+
291
+ # Compute v-objective target
292
+ v_target = (x - c_skip * x_noisy) / (c_out + 1e-7)
293
+
294
+ # Compute loss
295
+ loss = F.mse_loss(x_pred, v_target)
296
+ return loss
297
+
298
+
299
+ """
300
+ Diffusion Sampling
301
+ """
302
+
303
+ """ Schedules """
304
+
305
+
306
+ class Schedule(nn.Module):
307
+ """Interface used by different sampling schedules"""
308
+
309
+ def forward(self, num_steps: int, device: torch.device) -> Tensor:
310
+ raise NotImplementedError()
311
+
312
+
313
+ class LinearSchedule(Schedule):
314
+ def forward(self, num_steps: int, device: Any) -> Tensor:
315
+ sigmas = torch.linspace(1, 0, num_steps + 1)[:-1]
316
+ return sigmas
317
+
318
+
319
+ class KarrasSchedule(Schedule):
320
+ """https://arxiv.org/abs/2206.00364 equation 5"""
321
+
322
+ def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
323
+ super().__init__()
324
+ self.sigma_min = sigma_min
325
+ self.sigma_max = sigma_max
326
+ self.rho = rho
327
+
328
+ def forward(self, num_steps: int, device: Any) -> Tensor:
329
+ rho_inv = 1.0 / self.rho
330
+ steps = torch.arange(num_steps, device=device, dtype=torch.float32)
331
+ sigmas = (
332
+ self.sigma_max ** rho_inv
333
+ + (steps / (num_steps - 1))
334
+ * (self.sigma_min ** rho_inv - self.sigma_max ** rho_inv)
335
+ ) ** self.rho
336
+ sigmas = F.pad(sigmas, pad=(0, 1), value=0.0)
337
+ return sigmas
338
+
339
+
340
+ """ Samplers """
341
+
342
+
343
+ class Sampler(nn.Module):
344
+
345
+ diffusion_types: List[Type[Diffusion]] = []
346
+
347
+ def forward(
348
+ self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
349
+ ) -> Tensor:
350
+ raise NotImplementedError()
351
+
352
+ def inpaint(
353
+ self,
354
+ source: Tensor,
355
+ mask: Tensor,
356
+ fn: Callable,
357
+ sigmas: Tensor,
358
+ num_steps: int,
359
+ num_resamples: int,
360
+ ) -> Tensor:
361
+ raise NotImplementedError("Inpainting not available with current sampler")
362
+
363
+
364
+ class VSampler(Sampler):
365
+
366
+ diffusion_types = [VDiffusion]
367
+
368
+ def get_alpha_beta(self, sigma: float) -> Tuple[float, float]:
369
+ angle = sigma * pi / 2
370
+ alpha = cos(angle)
371
+ beta = sin(angle)
372
+ return alpha, beta
373
+
374
+ def forward(
375
+ self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
376
+ ) -> Tensor:
377
+ x = sigmas[0] * noise
378
+ alpha, beta = self.get_alpha_beta(sigmas[0].item())
379
+
380
+ for i in range(num_steps - 1):
381
+ is_last = i == num_steps - 1
382
+
383
+ x_denoised = fn(x, sigma=sigmas[i])
384
+ x_pred = x * alpha - x_denoised * beta
385
+ x_eps = x * beta + x_denoised * alpha
386
+
387
+ if not is_last:
388
+ alpha, beta = self.get_alpha_beta(sigmas[i + 1].item())
389
+ x = x_pred * alpha + x_eps * beta
390
+
391
+ return x_pred
392
+
393
+
394
+ class KarrasSampler(Sampler):
395
+ """https://arxiv.org/abs/2206.00364 algorithm 1"""
396
+
397
+ diffusion_types = [KDiffusion, VKDiffusion]
398
+
399
+ def __init__(
400
+ self,
401
+ s_tmin: float = 0,
402
+ s_tmax: float = float("inf"),
403
+ s_churn: float = 0.0,
404
+ s_noise: float = 1.0,
405
+ ):
406
+ super().__init__()
407
+ self.s_tmin = s_tmin
408
+ self.s_tmax = s_tmax
409
+ self.s_noise = s_noise
410
+ self.s_churn = s_churn
411
+
412
+ def step(
413
+ self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float
414
+ ) -> Tensor:
415
+ """Algorithm 2 (step)"""
416
+ # Select temporarily increased noise level
417
+ sigma_hat = sigma + gamma * sigma
418
+ # Add noise to move from sigma to sigma_hat
419
+ epsilon = self.s_noise * torch.randn_like(x)
420
+ x_hat = x + sqrt(sigma_hat ** 2 - sigma ** 2) * epsilon
421
+ # Evaluate ∂x/∂sigma at sigma_hat
422
+ d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat
423
+ # Take euler step from sigma_hat to sigma_next
424
+ x_next = x_hat + (sigma_next - sigma_hat) * d
425
+ # Second order correction
426
+ if sigma_next != 0:
427
+ model_out_next = fn(x_next, sigma=sigma_next)
428
+ d_prime = (x_next - model_out_next) / sigma_next
429
+ x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime)
430
+ return x_next
431
+
432
+ def forward(
433
+ self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
434
+ ) -> Tensor:
435
+ x = sigmas[0] * noise
436
+ # Compute gammas
437
+ gammas = torch.where(
438
+ (sigmas >= self.s_tmin) & (sigmas <= self.s_tmax),
439
+ min(self.s_churn / num_steps, sqrt(2) - 1),
440
+ 0.0,
441
+ )
442
+ # Denoise to sample
443
+ for i in range(num_steps - 1):
444
+ x = self.step(
445
+ x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i] # type: ignore # noqa
446
+ )
447
+
448
+ return x
449
+
450
+
451
+ class AEulerSampler(Sampler):
452
+
453
+ diffusion_types = [KDiffusion, VKDiffusion]
454
+
455
+ def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]:
456
+ sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
457
+ sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
458
+ return sigma_up, sigma_down
459
+
460
+ def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
461
+ # Sigma steps
462
+ sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next)
463
+ # Derivative at sigma (∂x/∂sigma)
464
+ d = (x - fn(x, sigma=sigma)) / sigma
465
+ # Euler method
466
+ x_next = x + d * (sigma_down - sigma)
467
+ # Add randomness
468
+ x_next = x_next + torch.randn_like(x) * sigma_up
469
+ return x_next
470
+
471
+ def forward(
472
+ self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
473
+ ) -> Tensor:
474
+ x = sigmas[0] * noise
475
+ # Denoise to sample
476
+ for i in range(num_steps - 1):
477
+ x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
478
+ return x
479
+
480
+
481
+ class ADPM2Sampler(Sampler):
482
+ """https://www.desmos.com/calculator/jbxjlqd9mb"""
483
+
484
+ diffusion_types = [KDiffusion, VKDiffusion]
485
+
486
+ def __init__(self, rho: float = 1.0):
487
+ super().__init__()
488
+ self.rho = rho
489
+
490
+ def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float, float]:
491
+ r = self.rho
492
+ sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
493
+ sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
494
+ sigma_mid = ((sigma ** (1 / r) + sigma_down ** (1 / r)) / 2) ** r
495
+ return sigma_up, sigma_down, sigma_mid
496
+
497
+ def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
498
+ # Sigma steps
499
+ sigma_up, sigma_down, sigma_mid = self.get_sigmas(sigma, sigma_next)
500
+ # Derivative at sigma (∂x/∂sigma)
501
+ d = (x - fn(x, sigma=sigma)) / sigma
502
+ # Denoise to midpoint
503
+ x_mid = x + d * (sigma_mid - sigma)
504
+ # Derivative at sigma_mid (∂x_mid/∂sigma_mid)
505
+ d_mid = (x_mid - fn(x_mid, sigma=sigma_mid)) / sigma_mid
506
+ # Denoise to next
507
+ x = x + d_mid * (sigma_down - sigma)
508
+ # Add randomness
509
+ x_next = x + torch.randn_like(x) * sigma_up
510
+ return x_next
511
+
512
+ def forward(
513
+ self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
514
+ ) -> Tensor:
515
+ x = sigmas[0] * noise
516
+ # Denoise to sample
517
+ for i in range(num_steps - 1):
518
+ x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
519
+ return x
520
+
521
+ def inpaint(
522
+ self,
523
+ source: Tensor,
524
+ mask: Tensor,
525
+ fn: Callable,
526
+ sigmas: Tensor,
527
+ num_steps: int,
528
+ num_resamples: int,
529
+ ) -> Tensor:
530
+ x = sigmas[0] * torch.randn_like(source)
531
+
532
+ for i in range(num_steps - 1):
533
+ # Noise source to current noise level
534
+ source_noisy = source + sigmas[i] * torch.randn_like(source)
535
+ for r in range(num_resamples):
536
+ # Merge noisy source and current then denoise
537
+ x = source_noisy * mask + x * ~mask
538
+ x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
539
+ # Renoise if not last resample step
540
+ if r < num_resamples - 1:
541
+ sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2)
542
+ x = x + sigma * torch.randn_like(x)
543
+
544
+ return source * mask + x * ~mask
545
+
546
+
547
+ """ Main Classes """
548
+
549
+
550
+ class DiffusionSampler(nn.Module):
551
+ def __init__(
552
+ self,
553
+ diffusion: Diffusion,
554
+ *,
555
+ sampler: Sampler,
556
+ sigma_schedule: Schedule,
557
+ num_steps: Optional[int] = None,
558
+ clamp: bool = True,
559
+ ):
560
+ super().__init__()
561
+ self.denoise_fn = diffusion.denoise_fn
562
+ self.sampler = sampler
563
+ self.sigma_schedule = sigma_schedule
564
+ self.num_steps = num_steps
565
+ self.clamp = clamp
566
+
567
+ # Check sampler is compatible with diffusion type
568
+ sampler_class = sampler.__class__.__name__
569
+ diffusion_class = diffusion.__class__.__name__
570
+ message = f"{sampler_class} incompatible with {diffusion_class}"
571
+ assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
572
+
573
+ def forward(
574
+ self, noise: Tensor, num_steps: Optional[int] = None, **kwargs
575
+ ) -> Tensor:
576
+ device = noise.device
577
+ num_steps = default(num_steps, self.num_steps) # type: ignore
578
+ assert exists(num_steps), "Parameter `num_steps` must be provided"
579
+ # Compute sigmas using schedule
580
+ sigmas = self.sigma_schedule(num_steps, device)
581
+ # Append additional kwargs to denoise function (used e.g. for conditional unet)
582
+ fn = lambda *a, **ka: self.denoise_fn(*a, **{**ka, **kwargs}) # noqa
583
+ # Sample using sampler
584
+ x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
585
+ x = x.clamp(-1.0, 1.0) if self.clamp else x
586
+ return x
587
+
588
+
589
+ class DiffusionInpainter(nn.Module):
590
+ def __init__(
591
+ self,
592
+ diffusion: Diffusion,
593
+ *,
594
+ num_steps: int,
595
+ num_resamples: int,
596
+ sampler: Sampler,
597
+ sigma_schedule: Schedule,
598
+ ):
599
+ super().__init__()
600
+ self.denoise_fn = diffusion.denoise_fn
601
+ self.num_steps = num_steps
602
+ self.num_resamples = num_resamples
603
+ self.inpaint_fn = sampler.inpaint
604
+ self.sigma_schedule = sigma_schedule
605
+
606
+ @torch.no_grad()
607
+ def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor:
608
+ x = self.inpaint_fn(
609
+ source=inpaint,
610
+ mask=inpaint_mask,
611
+ fn=self.denoise_fn,
612
+ sigmas=self.sigma_schedule(self.num_steps, inpaint.device),
613
+ num_steps=self.num_steps,
614
+ num_resamples=self.num_resamples,
615
+ )
616
+ return x
617
+
618
+
619
+ def sequential_mask(like: Tensor, start: int) -> Tensor:
620
+ length, device = like.shape[2], like.device
621
+ mask = torch.ones_like(like, dtype=torch.bool)
622
+ mask[:, :, start:] = torch.zeros((length - start,), device=device)
623
+ return mask
624
+
625
+
626
+ class SpanBySpanComposer(nn.Module):
627
+ def __init__(
628
+ self,
629
+ inpainter: DiffusionInpainter,
630
+ *,
631
+ num_spans: int,
632
+ ):
633
+ super().__init__()
634
+ self.inpainter = inpainter
635
+ self.num_spans = num_spans
636
+
637
+ def forward(self, start: Tensor, keep_start: bool = False) -> Tensor:
638
+ half_length = start.shape[2] // 2
639
+
640
+ spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else []
641
+ # Inpaint second half from first half
642
+ inpaint = torch.zeros_like(start)
643
+ inpaint[:, :, :half_length] = start[:, :, half_length:]
644
+ inpaint_mask = sequential_mask(like=start, start=half_length)
645
+
646
+ for i in range(self.num_spans):
647
+ # Inpaint second half
648
+ span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask)
649
+ # Replace first half with generated second half
650
+ second_half = span[:, :, half_length:]
651
+ inpaint[:, :, :half_length] = second_half
652
+ # Save generated span
653
+ spans.append(second_half)
654
+
655
+ return torch.cat(spans, dim=2)
656
+
657
+
658
+ class XDiffusion(nn.Module):
659
+ def __init__(self, type: str, net: nn.Module, **kwargs):
660
+ super().__init__()
661
+
662
+ diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion]
663
+ aliases = [t.alias for t in diffusion_classes] # type: ignore
664
+ message = f"type='{type}' must be one of {*aliases,}"
665
+ assert type in aliases, message
666
+ self.net = net
667
+
668
+ for XDiffusion in diffusion_classes:
669
+ if XDiffusion.alias == type: # type: ignore
670
+ self.diffusion = XDiffusion(net=net, **kwargs)
671
+
672
+ def forward(self, *args, **kwargs) -> Tensor:
673
+ return self.diffusion(*args, **kwargs)
674
+
675
+ def sample(
676
+ self,
677
+ noise: Tensor,
678
+ num_steps: int,
679
+ sigma_schedule: Schedule,
680
+ sampler: Sampler,
681
+ clamp: bool,
682
+ **kwargs,
683
+ ) -> Tensor:
684
+ diffusion_sampler = DiffusionSampler(
685
+ diffusion=self.diffusion,
686
+ sampler=sampler,
687
+ sigma_schedule=sigma_schedule,
688
+ num_steps=num_steps,
689
+ clamp=clamp,
690
+ )
691
+ return diffusion_sampler(noise, **kwargs)
Modules/diffusion/utils.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import reduce
2
+ from inspect import isfunction
3
+ from math import ceil, floor, log2, pi
4
+ from typing import Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from einops import rearrange
9
+ from torch import Generator, Tensor
10
+ from typing_extensions import TypeGuard
11
+
12
+ T = TypeVar("T")
13
+
14
+
15
+ def exists(val: Optional[T]) -> TypeGuard[T]:
16
+ return val is not None
17
+
18
+
19
+ def iff(condition: bool, value: T) -> Optional[T]:
20
+ return value if condition else None
21
+
22
+
23
+ def is_sequence(obj: T) -> TypeGuard[Union[list, tuple]]:
24
+ return isinstance(obj, list) or isinstance(obj, tuple)
25
+
26
+
27
+ def default(val: Optional[T], d: Union[Callable[..., T], T]) -> T:
28
+ if exists(val):
29
+ return val
30
+ return d() if isfunction(d) else d
31
+
32
+
33
+ def to_list(val: Union[T, Sequence[T]]) -> List[T]:
34
+ if isinstance(val, tuple):
35
+ return list(val)
36
+ if isinstance(val, list):
37
+ return val
38
+ return [val] # type: ignore
39
+
40
+
41
+ def prod(vals: Sequence[int]) -> int:
42
+ return reduce(lambda x, y: x * y, vals)
43
+
44
+
45
+ def closest_power_2(x: float) -> int:
46
+ exponent = log2(x)
47
+ distance_fn = lambda z: abs(x - 2 ** z) # noqa
48
+ exponent_closest = min((floor(exponent), ceil(exponent)), key=distance_fn)
49
+ return 2 ** int(exponent_closest)
50
+
51
+ def rand_bool(shape, proba, device = None):
52
+ if proba == 1:
53
+ return torch.ones(shape, device=device, dtype=torch.bool)
54
+ elif proba == 0:
55
+ return torch.zeros(shape, device=device, dtype=torch.bool)
56
+ else:
57
+ return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
58
+
59
+
60
+ """
61
+ Kwargs Utils
62
+ """
63
+
64
+
65
+ def group_dict_by_prefix(prefix: str, d: Dict) -> Tuple[Dict, Dict]:
66
+ return_dicts: Tuple[Dict, Dict] = ({}, {})
67
+ for key in d.keys():
68
+ no_prefix = int(not key.startswith(prefix))
69
+ return_dicts[no_prefix][key] = d[key]
70
+ return return_dicts
71
+
72
+
73
+ def groupby(prefix: str, d: Dict, keep_prefix: bool = False) -> Tuple[Dict, Dict]:
74
+ kwargs_with_prefix, kwargs = group_dict_by_prefix(prefix, d)
75
+ if keep_prefix:
76
+ return kwargs_with_prefix, kwargs
77
+ kwargs_no_prefix = {k[len(prefix) :]: v for k, v in kwargs_with_prefix.items()}
78
+ return kwargs_no_prefix, kwargs
79
+
80
+
81
+ def prefix_dict(prefix: str, d: Dict) -> Dict:
82
+ return {prefix + str(k): v for k, v in d.items()}
Modules/discriminators.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import torch.nn as nn
4
+ from torch.nn import Conv1d, AvgPool1d, Conv2d
5
+ from torch.nn.utils import weight_norm, spectral_norm
6
+
7
+ from .utils import get_padding
8
+
9
+ LRELU_SLOPE = 0.1
10
+
11
+ def stft(x, fft_size, hop_size, win_length, window):
12
+ """Perform STFT and convert to magnitude spectrogram.
13
+ Args:
14
+ x (Tensor): Input signal tensor (B, T).
15
+ fft_size (int): FFT size.
16
+ hop_size (int): Hop size.
17
+ win_length (int): Window length.
18
+ window (str): Window function type.
19
+ Returns:
20
+ Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
21
+ """
22
+ x_stft = torch.stft(x, fft_size, hop_size, win_length, window,
23
+ return_complex=True)
24
+ real = x_stft[..., 0]
25
+ imag = x_stft[..., 1]
26
+
27
+ return torch.abs(x_stft).transpose(2, 1)
28
+
29
+ class SpecDiscriminator(nn.Module):
30
+ """docstring for Discriminator."""
31
+
32
+ def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
33
+ super(SpecDiscriminator, self).__init__()
34
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
35
+ self.fft_size = fft_size
36
+ self.shift_size = shift_size
37
+ self.win_length = win_length
38
+ self.window = getattr(torch, window)(win_length)
39
+ self.discriminators = nn.ModuleList([
40
+ norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
41
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
42
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
43
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
44
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))),
45
+ ])
46
+
47
+ self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
48
+
49
+ def forward(self, y):
50
+
51
+ fmap = []
52
+ y = y.squeeze(1)
53
+ y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device()))
54
+ y = y.unsqueeze(1)
55
+ for i, d in enumerate(self.discriminators):
56
+ y = d(y)
57
+ y = F.leaky_relu(y, LRELU_SLOPE)
58
+ fmap.append(y)
59
+
60
+ y = self.out(y)
61
+ fmap.append(y)
62
+
63
+ return torch.flatten(y, 1, -1), fmap
64
+
65
+ class MultiResSpecDiscriminator(torch.nn.Module):
66
+
67
+ def __init__(self,
68
+ fft_sizes=[1024, 2048, 512],
69
+ hop_sizes=[120, 240, 50],
70
+ win_lengths=[600, 1200, 240],
71
+ window="hann_window"):
72
+
73
+ super(MultiResSpecDiscriminator, self).__init__()
74
+ self.discriminators = nn.ModuleList([
75
+ SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
76
+ SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
77
+ SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)
78
+ ])
79
+
80
+ def forward(self, y, y_hat):
81
+ y_d_rs = []
82
+ y_d_gs = []
83
+ fmap_rs = []
84
+ fmap_gs = []
85
+ for i, d in enumerate(self.discriminators):
86
+ y_d_r, fmap_r = d(y)
87
+ y_d_g, fmap_g = d(y_hat)
88
+ y_d_rs.append(y_d_r)
89
+ fmap_rs.append(fmap_r)
90
+ y_d_gs.append(y_d_g)
91
+ fmap_gs.append(fmap_g)
92
+
93
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
94
+
95
+
96
+ class DiscriminatorP(torch.nn.Module):
97
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
98
+ super(DiscriminatorP, self).__init__()
99
+ self.period = period
100
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
101
+ self.convs = nn.ModuleList([
102
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
103
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
104
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
105
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
106
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
107
+ ])
108
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
109
+
110
+ def forward(self, x):
111
+ fmap = []
112
+
113
+ # 1d to 2d
114
+ b, c, t = x.shape
115
+ if t % self.period != 0: # pad first
116
+ n_pad = self.period - (t % self.period)
117
+ x = F.pad(x, (0, n_pad), "reflect")
118
+ t = t + n_pad
119
+ x = x.view(b, c, t // self.period, self.period)
120
+
121
+ for l in self.convs:
122
+ x = l(x)
123
+ x = F.leaky_relu(x, LRELU_SLOPE)
124
+ fmap.append(x)
125
+ x = self.conv_post(x)
126
+ fmap.append(x)
127
+ x = torch.flatten(x, 1, -1)
128
+
129
+ return x, fmap
130
+
131
+
132
+ class MultiPeriodDiscriminator(torch.nn.Module):
133
+ def __init__(self):
134
+ super(MultiPeriodDiscriminator, self).__init__()
135
+ self.discriminators = nn.ModuleList([
136
+ DiscriminatorP(2),
137
+ DiscriminatorP(3),
138
+ DiscriminatorP(5),
139
+ DiscriminatorP(7),
140
+ DiscriminatorP(11),
141
+ ])
142
+
143
+ def forward(self, y, y_hat):
144
+ y_d_rs = []
145
+ y_d_gs = []
146
+ fmap_rs = []
147
+ fmap_gs = []
148
+ for i, d in enumerate(self.discriminators):
149
+ y_d_r, fmap_r = d(y)
150
+ y_d_g, fmap_g = d(y_hat)
151
+ y_d_rs.append(y_d_r)
152
+ fmap_rs.append(fmap_r)
153
+ y_d_gs.append(y_d_g)
154
+ fmap_gs.append(fmap_g)
155
+
156
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
157
+
158
+ class WavLMDiscriminator(nn.Module):
159
+ """docstring for Discriminator."""
160
+
161
+ def __init__(self, slm_hidden=768,
162
+ slm_layers=13,
163
+ initial_channel=64,
164
+ use_spectral_norm=False):
165
+ super(WavLMDiscriminator, self).__init__()
166
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
167
+ self.pre = norm_f(Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0))
168
+
169
+ self.convs = nn.ModuleList([
170
+ norm_f(nn.Conv1d(initial_channel, initial_channel * 2, kernel_size=5, padding=2)),
171
+ norm_f(nn.Conv1d(initial_channel * 2, initial_channel * 4, kernel_size=5, padding=2)),
172
+ norm_f(nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2)),
173
+ ])
174
+
175
+ self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1))
176
+
177
+ def forward(self, x):
178
+ x = self.pre(x)
179
+
180
+ fmap = []
181
+ for l in self.convs:
182
+ x = l(x)
183
+ x = F.leaky_relu(x, LRELU_SLOPE)
184
+ fmap.append(x)
185
+ x = self.conv_post(x)
186
+ x = torch.flatten(x, 1, -1)
187
+
188
+ return x
Modules/hifigan.py ADDED
@@ -0,0 +1,477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import torch.nn as nn
4
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
5
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
6
+ from .utils import init_weights, get_padding
7
+
8
+ import math
9
+ import random
10
+ import numpy as np
11
+
12
+ LRELU_SLOPE = 0.1
13
+
14
+ class AdaIN1d(nn.Module):
15
+ def __init__(self, style_dim, num_features):
16
+ super().__init__()
17
+ self.norm = nn.InstanceNorm1d(num_features, affine=False)
18
+ self.fc = nn.Linear(style_dim, num_features*2)
19
+
20
+ def forward(self, x, s):
21
+ h = self.fc(s)
22
+ h = h.view(h.size(0), h.size(1), 1)
23
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
24
+ return (1 + gamma) * self.norm(x) + beta
25
+
26
+ class AdaINResBlock1(torch.nn.Module):
27
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
28
+ super(AdaINResBlock1, self).__init__()
29
+ self.convs1 = nn.ModuleList([
30
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
31
+ padding=get_padding(kernel_size, dilation[0]))),
32
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
33
+ padding=get_padding(kernel_size, dilation[1]))),
34
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
35
+ padding=get_padding(kernel_size, dilation[2])))
36
+ ])
37
+ self.convs1.apply(init_weights)
38
+
39
+ self.convs2 = nn.ModuleList([
40
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
41
+ padding=get_padding(kernel_size, 1))),
42
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
43
+ padding=get_padding(kernel_size, 1))),
44
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
45
+ padding=get_padding(kernel_size, 1)))
46
+ ])
47
+ self.convs2.apply(init_weights)
48
+
49
+ self.adain1 = nn.ModuleList([
50
+ AdaIN1d(style_dim, channels),
51
+ AdaIN1d(style_dim, channels),
52
+ AdaIN1d(style_dim, channels),
53
+ ])
54
+
55
+ self.adain2 = nn.ModuleList([
56
+ AdaIN1d(style_dim, channels),
57
+ AdaIN1d(style_dim, channels),
58
+ AdaIN1d(style_dim, channels),
59
+ ])
60
+
61
+ self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
62
+ self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
63
+
64
+
65
+ def forward(self, x, s):
66
+ for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
67
+ xt = n1(x, s)
68
+ xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
69
+ xt = c1(xt)
70
+ xt = n2(xt, s)
71
+ xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
72
+ xt = c2(xt)
73
+ x = xt + x
74
+ return x
75
+
76
+ def remove_weight_norm(self):
77
+ for l in self.convs1:
78
+ remove_weight_norm(l)
79
+ for l in self.convs2:
80
+ remove_weight_norm(l)
81
+
82
+ class SineGen(torch.nn.Module):
83
+ """ Definition of sine generator
84
+ SineGen(samp_rate, harmonic_num = 0,
85
+ sine_amp = 0.1, noise_std = 0.003,
86
+ voiced_threshold = 0,
87
+ flag_for_pulse=False)
88
+ samp_rate: sampling rate in Hz
89
+ harmonic_num: number of harmonic overtones (default 0)
90
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
91
+ noise_std: std of Gaussian noise (default 0.003)
92
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
93
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
94
+ Note: when flag_for_pulse is True, the first time step of a voiced
95
+ segment is always sin(np.pi) or cos(0)
96
+ """
97
+
98
+ def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
99
+ sine_amp=0.1, noise_std=0.003,
100
+ voiced_threshold=0,
101
+ flag_for_pulse=False):
102
+ super(SineGen, self).__init__()
103
+ self.sine_amp = sine_amp
104
+ self.noise_std = noise_std
105
+ self.harmonic_num = harmonic_num
106
+ self.dim = self.harmonic_num + 1
107
+ self.sampling_rate = samp_rate
108
+ self.voiced_threshold = voiced_threshold
109
+ self.flag_for_pulse = flag_for_pulse
110
+ self.upsample_scale = upsample_scale
111
+
112
+ def _f02uv(self, f0):
113
+ # generate uv signal
114
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
115
+ return uv
116
+
117
+ def _f02sine(self, f0_values):
118
+ """ f0_values: (batchsize, length, dim)
119
+ where dim indicates fundamental tone and overtones
120
+ """
121
+ # convert to F0 in rad. The interger part n can be ignored
122
+ # because 2 * np.pi * n doesn't affect phase
123
+ rad_values = (f0_values / self.sampling_rate) % 1
124
+
125
+ # initial phase noise (no noise for fundamental component)
126
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
127
+ device=f0_values.device)
128
+ rand_ini[:, 0] = 0
129
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
130
+
131
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
132
+ if not self.flag_for_pulse:
133
+ # # for normal case
134
+
135
+ # # To prevent torch.cumsum numerical overflow,
136
+ # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
137
+ # # Buffer tmp_over_one_idx indicates the time step to add -1.
138
+ # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
139
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
140
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
141
+ # cumsum_shift = torch.zeros_like(rad_values)
142
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
143
+
144
+ # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
145
+ rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
146
+ scale_factor=1/self.upsample_scale,
147
+ mode="linear").transpose(1, 2)
148
+
149
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
150
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
151
+ # cumsum_shift = torch.zeros_like(rad_values)
152
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
153
+
154
+ phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
155
+ phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
156
+ scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
157
+ sines = torch.sin(phase)
158
+
159
+ else:
160
+ # If necessary, make sure that the first time step of every
161
+ # voiced segments is sin(pi) or cos(0)
162
+ # This is used for pulse-train generation
163
+
164
+ # identify the last time step in unvoiced segments
165
+ uv = self._f02uv(f0_values)
166
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
167
+ uv_1[:, -1, :] = 1
168
+ u_loc = (uv < 1) * (uv_1 > 0)
169
+
170
+ # get the instantanouse phase
171
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
172
+ # different batch needs to be processed differently
173
+ for idx in range(f0_values.shape[0]):
174
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
175
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
176
+ # stores the accumulation of i.phase within
177
+ # each voiced segments
178
+ tmp_cumsum[idx, :, :] = 0
179
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
180
+
181
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
182
+ # within the previous voiced segment.
183
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
184
+
185
+ # get the sines
186
+ sines = torch.cos(i_phase * 2 * np.pi)
187
+ return sines
188
+
189
+ def forward(self, f0):
190
+ """ sine_tensor, uv = forward(f0)
191
+ input F0: tensor(batchsize=1, length, dim=1)
192
+ f0 for unvoiced steps should be 0
193
+ output sine_tensor: tensor(batchsize=1, length, dim)
194
+ output uv: tensor(batchsize=1, length, 1)
195
+ """
196
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
197
+ device=f0.device)
198
+ # fundamental component
199
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
200
+
201
+ # generate sine waveforms
202
+ sine_waves = self._f02sine(fn) * self.sine_amp
203
+
204
+ # generate uv signal
205
+ # uv = torch.ones(f0.shape)
206
+ # uv = uv * (f0 > self.voiced_threshold)
207
+ uv = self._f02uv(f0)
208
+
209
+ # noise: for unvoiced should be similar to sine_amp
210
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
211
+ # . for voiced regions is self.noise_std
212
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
213
+ noise = noise_amp * torch.randn_like(sine_waves)
214
+
215
+ # first: set the unvoiced part to 0 by uv
216
+ # then: additive noise
217
+ sine_waves = sine_waves * uv + noise
218
+ return sine_waves, uv, noise
219
+
220
+
221
+ class SourceModuleHnNSF(torch.nn.Module):
222
+ """ SourceModule for hn-nsf
223
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
224
+ add_noise_std=0.003, voiced_threshod=0)
225
+ sampling_rate: sampling_rate in Hz
226
+ harmonic_num: number of harmonic above F0 (default: 0)
227
+ sine_amp: amplitude of sine source signal (default: 0.1)
228
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
229
+ note that amplitude of noise in unvoiced is decided
230
+ by sine_amp
231
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
232
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
233
+ F0_sampled (batchsize, length, 1)
234
+ Sine_source (batchsize, length, 1)
235
+ noise_source (batchsize, length 1)
236
+ uv (batchsize, length, 1)
237
+ """
238
+
239
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
240
+ add_noise_std=0.003, voiced_threshod=0):
241
+ super(SourceModuleHnNSF, self).__init__()
242
+
243
+ self.sine_amp = sine_amp
244
+ self.noise_std = add_noise_std
245
+
246
+ # to produce sine waveforms
247
+ self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
248
+ sine_amp, add_noise_std, voiced_threshod)
249
+
250
+ # to merge source harmonics into a single excitation
251
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
252
+ self.l_tanh = torch.nn.Tanh()
253
+
254
+ def forward(self, x):
255
+ """
256
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
257
+ F0_sampled (batchsize, length, 1)
258
+ Sine_source (batchsize, length, 1)
259
+ noise_source (batchsize, length 1)
260
+ """
261
+ # source for harmonic branch
262
+ with torch.no_grad():
263
+ sine_wavs, uv, _ = self.l_sin_gen(x)
264
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
265
+
266
+ # source for noise branch, in the same shape as uv
267
+ noise = torch.randn_like(uv) * self.sine_amp / 3
268
+ return sine_merge, noise, uv
269
+ def padDiff(x):
270
+ return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
271
+
272
+ class Generator(torch.nn.Module):
273
+ def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes):
274
+ super(Generator, self).__init__()
275
+ self.num_kernels = len(resblock_kernel_sizes)
276
+ self.num_upsamples = len(upsample_rates)
277
+ resblock = AdaINResBlock1
278
+
279
+ self.m_source = SourceModuleHnNSF(
280
+ sampling_rate=24000,
281
+ upsample_scale=np.prod(upsample_rates),
282
+ harmonic_num=8, voiced_threshod=10)
283
+
284
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
285
+ self.noise_convs = nn.ModuleList()
286
+ self.ups = nn.ModuleList()
287
+ self.noise_res = nn.ModuleList()
288
+
289
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
290
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
291
+
292
+ self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
293
+ upsample_initial_channel//(2**(i+1)),
294
+ k, u, padding=(u//2 + u%2), output_padding=u%2)))
295
+
296
+ if i + 1 < len(upsample_rates): #
297
+ stride_f0 = np.prod(upsample_rates[i + 1:])
298
+ self.noise_convs.append(Conv1d(
299
+ 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
300
+ self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
301
+ else:
302
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
303
+ self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
304
+
305
+ self.resblocks = nn.ModuleList()
306
+
307
+ self.alphas = nn.ParameterList()
308
+ self.alphas.append(nn.Parameter(torch.ones(1, upsample_initial_channel, 1)))
309
+
310
+ for i in range(len(self.ups)):
311
+ ch = upsample_initial_channel//(2**(i+1))
312
+ self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
313
+
314
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
315
+ self.resblocks.append(resblock(ch, k, d, style_dim))
316
+
317
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
318
+ self.ups.apply(init_weights)
319
+ self.conv_post.apply(init_weights)
320
+
321
+ def forward(self, x, s, f0):
322
+
323
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
324
+
325
+ har_source, noi_source, uv = self.m_source(f0)
326
+ har_source = har_source.transpose(1, 2)
327
+
328
+ for i in range(self.num_upsamples):
329
+ x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
330
+ x_source = self.noise_convs[i](har_source)
331
+ x_source = self.noise_res[i](x_source, s)
332
+
333
+ x = self.ups[i](x)
334
+ x = x + x_source
335
+
336
+ xs = None
337
+ for j in range(self.num_kernels):
338
+ if xs is None:
339
+ xs = self.resblocks[i*self.num_kernels+j](x, s)
340
+ else:
341
+ xs += self.resblocks[i*self.num_kernels+j](x, s)
342
+ x = xs / self.num_kernels
343
+ x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2)
344
+ x = self.conv_post(x)
345
+ x = torch.tanh(x)
346
+
347
+ return x
348
+
349
+ def remove_weight_norm(self):
350
+ print('Removing weight norm...')
351
+ for l in self.ups:
352
+ remove_weight_norm(l)
353
+ for l in self.resblocks:
354
+ l.remove_weight_norm()
355
+ remove_weight_norm(self.conv_pre)
356
+ remove_weight_norm(self.conv_post)
357
+
358
+
359
+ class AdainResBlk1d(nn.Module):
360
+ def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
361
+ upsample='none', dropout_p=0.0):
362
+ super().__init__()
363
+ self.actv = actv
364
+ self.upsample_type = upsample
365
+ self.upsample = UpSample1d(upsample)
366
+ self.learned_sc = dim_in != dim_out
367
+ self._build_weights(dim_in, dim_out, style_dim)
368
+ self.dropout = nn.Dropout(dropout_p)
369
+
370
+ if upsample == 'none':
371
+ self.pool = nn.Identity()
372
+ else:
373
+ self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
374
+
375
+
376
+ def _build_weights(self, dim_in, dim_out, style_dim):
377
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
378
+ self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
379
+ self.norm1 = AdaIN1d(style_dim, dim_in)
380
+ self.norm2 = AdaIN1d(style_dim, dim_out)
381
+ if self.learned_sc:
382
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
383
+
384
+ def _shortcut(self, x):
385
+ x = self.upsample(x)
386
+ if self.learned_sc:
387
+ x = self.conv1x1(x)
388
+ return x
389
+
390
+ def _residual(self, x, s):
391
+ x = self.norm1(x, s)
392
+ x = self.actv(x)
393
+ x = self.pool(x)
394
+ x = self.conv1(self.dropout(x))
395
+ x = self.norm2(x, s)
396
+ x = self.actv(x)
397
+ x = self.conv2(self.dropout(x))
398
+ return x
399
+
400
+ def forward(self, x, s):
401
+ out = self._residual(x, s)
402
+ out = (out + self._shortcut(x)) / math.sqrt(2)
403
+ return out
404
+
405
+ class UpSample1d(nn.Module):
406
+ def __init__(self, layer_type):
407
+ super().__init__()
408
+ self.layer_type = layer_type
409
+
410
+ def forward(self, x):
411
+ if self.layer_type == 'none':
412
+ return x
413
+ else:
414
+ return F.interpolate(x, scale_factor=2, mode='nearest')
415
+
416
+ class Decoder(nn.Module):
417
+ def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
418
+ resblock_kernel_sizes = [3,7,11],
419
+ upsample_rates = [10,5,3,2],
420
+ upsample_initial_channel=512,
421
+ resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
422
+ upsample_kernel_sizes=[20,10,6,4]):
423
+ super().__init__()
424
+
425
+ self.decode = nn.ModuleList()
426
+
427
+ self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
428
+
429
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
430
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
431
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
432
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
433
+
434
+ self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
435
+
436
+ self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
437
+
438
+ self.asr_res = nn.Sequential(
439
+ weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
440
+ )
441
+
442
+
443
+ self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
444
+
445
+
446
+ def forward(self, asr, F0_curve, N, s):
447
+ if self.training:
448
+ downlist = [0, 3, 7]
449
+ F0_down = downlist[random.randint(0, 2)]
450
+ downlist = [0, 3, 7, 15]
451
+ N_down = downlist[random.randint(0, 3)]
452
+ if F0_down:
453
+ F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
454
+ if N_down:
455
+ N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
456
+
457
+
458
+ F0 = self.F0_conv(F0_curve.unsqueeze(1))
459
+ N = self.N_conv(N.unsqueeze(1))
460
+
461
+ x = torch.cat([asr, F0, N], axis=1)
462
+ x = self.encode(x, s)
463
+
464
+ asr_res = self.asr_res(asr)
465
+
466
+ res = True
467
+ for block in self.decode:
468
+ if res:
469
+ x = torch.cat([x, asr_res, F0, N], axis=1)
470
+ x = block(x, s)
471
+ if block.upsample_type != "none":
472
+ res = False
473
+
474
+ x = self.generator(x, s, F0_curve)
475
+ return x
476
+
477
+
Modules/istftnet.py ADDED
@@ -0,0 +1,530 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import torch.nn as nn
4
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
5
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
6
+ from .utils import init_weights, get_padding
7
+
8
+ import math
9
+ import random
10
+ import numpy as np
11
+ from scipy.signal import get_window
12
+
13
+ LRELU_SLOPE = 0.1
14
+
15
+ class AdaIN1d(nn.Module):
16
+ def __init__(self, style_dim, num_features):
17
+ super().__init__()
18
+ self.norm = nn.InstanceNorm1d(num_features, affine=False)
19
+ self.fc = nn.Linear(style_dim, num_features*2)
20
+
21
+ def forward(self, x, s):
22
+ h = self.fc(s)
23
+ h = h.view(h.size(0), h.size(1), 1)
24
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
25
+ return (1 + gamma) * self.norm(x) + beta
26
+
27
+ class AdaINResBlock1(torch.nn.Module):
28
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
29
+ super(AdaINResBlock1, self).__init__()
30
+ self.convs1 = nn.ModuleList([
31
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
32
+ padding=get_padding(kernel_size, dilation[0]))),
33
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
34
+ padding=get_padding(kernel_size, dilation[1]))),
35
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
36
+ padding=get_padding(kernel_size, dilation[2])))
37
+ ])
38
+ self.convs1.apply(init_weights)
39
+
40
+ self.convs2 = nn.ModuleList([
41
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
42
+ padding=get_padding(kernel_size, 1))),
43
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
44
+ padding=get_padding(kernel_size, 1))),
45
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
46
+ padding=get_padding(kernel_size, 1)))
47
+ ])
48
+ self.convs2.apply(init_weights)
49
+
50
+ self.adain1 = nn.ModuleList([
51
+ AdaIN1d(style_dim, channels),
52
+ AdaIN1d(style_dim, channels),
53
+ AdaIN1d(style_dim, channels),
54
+ ])
55
+
56
+ self.adain2 = nn.ModuleList([
57
+ AdaIN1d(style_dim, channels),
58
+ AdaIN1d(style_dim, channels),
59
+ AdaIN1d(style_dim, channels),
60
+ ])
61
+
62
+ self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
63
+ self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
64
+
65
+
66
+ def forward(self, x, s):
67
+ for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
68
+ xt = n1(x, s)
69
+ xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
70
+ xt = c1(xt)
71
+ xt = n2(xt, s)
72
+ xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
73
+ xt = c2(xt)
74
+ x = xt + x
75
+ return x
76
+
77
+ def remove_weight_norm(self):
78
+ for l in self.convs1:
79
+ remove_weight_norm(l)
80
+ for l in self.convs2:
81
+ remove_weight_norm(l)
82
+
83
+ class TorchSTFT(torch.nn.Module):
84
+ def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
85
+ super().__init__()
86
+ self.filter_length = filter_length
87
+ self.hop_length = hop_length
88
+ self.win_length = win_length
89
+ self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
90
+
91
+ def transform(self, input_data):
92
+ forward_transform = torch.stft(
93
+ input_data,
94
+ self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
95
+ return_complex=True)
96
+
97
+ return torch.abs(forward_transform), torch.angle(forward_transform)
98
+
99
+ def inverse(self, magnitude, phase):
100
+ inverse_transform = torch.istft(
101
+ magnitude * torch.exp(phase * 1j),
102
+ self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
103
+
104
+ return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
105
+
106
+ def forward(self, input_data):
107
+ self.magnitude, self.phase = self.transform(input_data)
108
+ reconstruction = self.inverse(self.magnitude, self.phase)
109
+ return reconstruction
110
+
111
+ class SineGen(torch.nn.Module):
112
+ """ Definition of sine generator
113
+ SineGen(samp_rate, harmonic_num = 0,
114
+ sine_amp = 0.1, noise_std = 0.003,
115
+ voiced_threshold = 0,
116
+ flag_for_pulse=False)
117
+ samp_rate: sampling rate in Hz
118
+ harmonic_num: number of harmonic overtones (default 0)
119
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
120
+ noise_std: std of Gaussian noise (default 0.003)
121
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
122
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
123
+ Note: when flag_for_pulse is True, the first time step of a voiced
124
+ segment is always sin(np.pi) or cos(0)
125
+ """
126
+
127
+ def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
128
+ sine_amp=0.1, noise_std=0.003,
129
+ voiced_threshold=0,
130
+ flag_for_pulse=False):
131
+ super(SineGen, self).__init__()
132
+ self.sine_amp = sine_amp
133
+ self.noise_std = noise_std
134
+ self.harmonic_num = harmonic_num
135
+ self.dim = self.harmonic_num + 1
136
+ self.sampling_rate = samp_rate
137
+ self.voiced_threshold = voiced_threshold
138
+ self.flag_for_pulse = flag_for_pulse
139
+ self.upsample_scale = upsample_scale
140
+
141
+ def _f02uv(self, f0):
142
+ # generate uv signal
143
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
144
+ return uv
145
+
146
+ def _f02sine(self, f0_values):
147
+ """ f0_values: (batchsize, length, dim)
148
+ where dim indicates fundamental tone and overtones
149
+ """
150
+ # convert to F0 in rad. The interger part n can be ignored
151
+ # because 2 * np.pi * n doesn't affect phase
152
+ rad_values = (f0_values / self.sampling_rate) % 1
153
+
154
+ # initial phase noise (no noise for fundamental component)
155
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
156
+ device=f0_values.device)
157
+ rand_ini[:, 0] = 0
158
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
159
+
160
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
161
+ if not self.flag_for_pulse:
162
+ # # for normal case
163
+
164
+ # # To prevent torch.cumsum numerical overflow,
165
+ # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
166
+ # # Buffer tmp_over_one_idx indicates the time step to add -1.
167
+ # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
168
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
169
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
170
+ # cumsum_shift = torch.zeros_like(rad_values)
171
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
172
+
173
+ # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
174
+ rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
175
+ scale_factor=1/self.upsample_scale,
176
+ mode="linear").transpose(1, 2)
177
+
178
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
179
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
180
+ # cumsum_shift = torch.zeros_like(rad_values)
181
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
182
+
183
+ phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
184
+ phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
185
+ scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
186
+ sines = torch.sin(phase)
187
+
188
+ else:
189
+ # If necessary, make sure that the first time step of every
190
+ # voiced segments is sin(pi) or cos(0)
191
+ # This is used for pulse-train generation
192
+
193
+ # identify the last time step in unvoiced segments
194
+ uv = self._f02uv(f0_values)
195
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
196
+ uv_1[:, -1, :] = 1
197
+ u_loc = (uv < 1) * (uv_1 > 0)
198
+
199
+ # get the instantanouse phase
200
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
201
+ # different batch needs to be processed differently
202
+ for idx in range(f0_values.shape[0]):
203
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
204
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
205
+ # stores the accumulation of i.phase within
206
+ # each voiced segments
207
+ tmp_cumsum[idx, :, :] = 0
208
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
209
+
210
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
211
+ # within the previous voiced segment.
212
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
213
+
214
+ # get the sines
215
+ sines = torch.cos(i_phase * 2 * np.pi)
216
+ return sines
217
+
218
+ def forward(self, f0):
219
+ """ sine_tensor, uv = forward(f0)
220
+ input F0: tensor(batchsize=1, length, dim=1)
221
+ f0 for unvoiced steps should be 0
222
+ output sine_tensor: tensor(batchsize=1, length, dim)
223
+ output uv: tensor(batchsize=1, length, 1)
224
+ """
225
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
226
+ device=f0.device)
227
+ # fundamental component
228
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
229
+
230
+ # generate sine waveforms
231
+ sine_waves = self._f02sine(fn) * self.sine_amp
232
+
233
+ # generate uv signal
234
+ # uv = torch.ones(f0.shape)
235
+ # uv = uv * (f0 > self.voiced_threshold)
236
+ uv = self._f02uv(f0)
237
+
238
+ # noise: for unvoiced should be similar to sine_amp
239
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
240
+ # . for voiced regions is self.noise_std
241
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
242
+ noise = noise_amp * torch.randn_like(sine_waves)
243
+
244
+ # first: set the unvoiced part to 0 by uv
245
+ # then: additive noise
246
+ sine_waves = sine_waves * uv + noise
247
+ return sine_waves, uv, noise
248
+
249
+
250
+ class SourceModuleHnNSF(torch.nn.Module):
251
+ """ SourceModule for hn-nsf
252
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
253
+ add_noise_std=0.003, voiced_threshod=0)
254
+ sampling_rate: sampling_rate in Hz
255
+ harmonic_num: number of harmonic above F0 (default: 0)
256
+ sine_amp: amplitude of sine source signal (default: 0.1)
257
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
258
+ note that amplitude of noise in unvoiced is decided
259
+ by sine_amp
260
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
261
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
262
+ F0_sampled (batchsize, length, 1)
263
+ Sine_source (batchsize, length, 1)
264
+ noise_source (batchsize, length 1)
265
+ uv (batchsize, length, 1)
266
+ """
267
+
268
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
269
+ add_noise_std=0.003, voiced_threshod=0):
270
+ super(SourceModuleHnNSF, self).__init__()
271
+
272
+ self.sine_amp = sine_amp
273
+ self.noise_std = add_noise_std
274
+
275
+ # to produce sine waveforms
276
+ self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
277
+ sine_amp, add_noise_std, voiced_threshod)
278
+
279
+ # to merge source harmonics into a single excitation
280
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
281
+ self.l_tanh = torch.nn.Tanh()
282
+
283
+ def forward(self, x):
284
+ """
285
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
286
+ F0_sampled (batchsize, length, 1)
287
+ Sine_source (batchsize, length, 1)
288
+ noise_source (batchsize, length 1)
289
+ """
290
+ # source for harmonic branch
291
+ with torch.no_grad():
292
+ sine_wavs, uv, _ = self.l_sin_gen(x)
293
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
294
+
295
+ # source for noise branch, in the same shape as uv
296
+ noise = torch.randn_like(uv) * self.sine_amp / 3
297
+ return sine_merge, noise, uv
298
+ def padDiff(x):
299
+ return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
300
+
301
+
302
+ class Generator(torch.nn.Module):
303
+ def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
304
+ super(Generator, self).__init__()
305
+
306
+ self.num_kernels = len(resblock_kernel_sizes)
307
+ self.num_upsamples = len(upsample_rates)
308
+ resblock = AdaINResBlock1
309
+
310
+ self.m_source = SourceModuleHnNSF(
311
+ sampling_rate=24000,
312
+ upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
313
+ harmonic_num=8, voiced_threshod=10)
314
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
315
+ self.noise_convs = nn.ModuleList()
316
+ self.noise_res = nn.ModuleList()
317
+
318
+ self.ups = nn.ModuleList()
319
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
320
+ self.ups.append(weight_norm(
321
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
322
+ k, u, padding=(k-u)//2)))
323
+
324
+ self.resblocks = nn.ModuleList()
325
+ for i in range(len(self.ups)):
326
+ ch = upsample_initial_channel//(2**(i+1))
327
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
328
+ self.resblocks.append(resblock(ch, k, d, style_dim))
329
+
330
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
331
+
332
+ if i + 1 < len(upsample_rates): #
333
+ stride_f0 = np.prod(upsample_rates[i + 1:])
334
+ self.noise_convs.append(Conv1d(
335
+ gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
336
+ self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
337
+ else:
338
+ self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
339
+ self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
340
+
341
+
342
+ self.post_n_fft = gen_istft_n_fft
343
+ self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
344
+ self.ups.apply(init_weights)
345
+ self.conv_post.apply(init_weights)
346
+ self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
347
+ self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
348
+
349
+
350
+ def forward(self, x, s, f0):
351
+ with torch.no_grad():
352
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
353
+
354
+ har_source, noi_source, uv = self.m_source(f0)
355
+ har_source = har_source.transpose(1, 2).squeeze(1)
356
+ har_spec, har_phase = self.stft.transform(har_source)
357
+ har = torch.cat([har_spec, har_phase], dim=1)
358
+
359
+ for i in range(self.num_upsamples):
360
+ x = F.leaky_relu(x, LRELU_SLOPE)
361
+ x_source = self.noise_convs[i](har)
362
+ x_source = self.noise_res[i](x_source, s)
363
+
364
+ x = self.ups[i](x)
365
+ if i == self.num_upsamples - 1:
366
+ x = self.reflection_pad(x)
367
+
368
+ x = x + x_source
369
+ xs = None
370
+ for j in range(self.num_kernels):
371
+ if xs is None:
372
+ xs = self.resblocks[i*self.num_kernels+j](x, s)
373
+ else:
374
+ xs += self.resblocks[i*self.num_kernels+j](x, s)
375
+ x = xs / self.num_kernels
376
+ x = F.leaky_relu(x)
377
+ x = self.conv_post(x)
378
+ spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
379
+ phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
380
+ return self.stft.inverse(spec, phase)
381
+
382
+ def fw_phase(self, x, s):
383
+ for i in range(self.num_upsamples):
384
+ x = F.leaky_relu(x, LRELU_SLOPE)
385
+ x = self.ups[i](x)
386
+ xs = None
387
+ for j in range(self.num_kernels):
388
+ if xs is None:
389
+ xs = self.resblocks[i*self.num_kernels+j](x, s)
390
+ else:
391
+ xs += self.resblocks[i*self.num_kernels+j](x, s)
392
+ x = xs / self.num_kernels
393
+ x = F.leaky_relu(x)
394
+ x = self.reflection_pad(x)
395
+ x = self.conv_post(x)
396
+ spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
397
+ phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
398
+ return spec, phase
399
+
400
+ def remove_weight_norm(self):
401
+ print('Removing weight norm...')
402
+ for l in self.ups:
403
+ remove_weight_norm(l)
404
+ for l in self.resblocks:
405
+ l.remove_weight_norm()
406
+ remove_weight_norm(self.conv_pre)
407
+ remove_weight_norm(self.conv_post)
408
+
409
+
410
+ class AdainResBlk1d(nn.Module):
411
+ def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
412
+ upsample='none', dropout_p=0.0):
413
+ super().__init__()
414
+ self.actv = actv
415
+ self.upsample_type = upsample
416
+ self.upsample = UpSample1d(upsample)
417
+ self.learned_sc = dim_in != dim_out
418
+ self._build_weights(dim_in, dim_out, style_dim)
419
+ self.dropout = nn.Dropout(dropout_p)
420
+
421
+ if upsample == 'none':
422
+ self.pool = nn.Identity()
423
+ else:
424
+ self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
425
+
426
+
427
+ def _build_weights(self, dim_in, dim_out, style_dim):
428
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
429
+ self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
430
+ self.norm1 = AdaIN1d(style_dim, dim_in)
431
+ self.norm2 = AdaIN1d(style_dim, dim_out)
432
+ if self.learned_sc:
433
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
434
+
435
+ def _shortcut(self, x):
436
+ x = self.upsample(x)
437
+ if self.learned_sc:
438
+ x = self.conv1x1(x)
439
+ return x
440
+
441
+ def _residual(self, x, s):
442
+ x = self.norm1(x, s)
443
+ x = self.actv(x)
444
+ x = self.pool(x)
445
+ x = self.conv1(self.dropout(x))
446
+ x = self.norm2(x, s)
447
+ x = self.actv(x)
448
+ x = self.conv2(self.dropout(x))
449
+ return x
450
+
451
+ def forward(self, x, s):
452
+ out = self._residual(x, s)
453
+ out = (out + self._shortcut(x)) / math.sqrt(2)
454
+ return out
455
+
456
+ class UpSample1d(nn.Module):
457
+ def __init__(self, layer_type):
458
+ super().__init__()
459
+ self.layer_type = layer_type
460
+
461
+ def forward(self, x):
462
+ if self.layer_type == 'none':
463
+ return x
464
+ else:
465
+ return F.interpolate(x, scale_factor=2, mode='nearest')
466
+
467
+ class Decoder(nn.Module):
468
+ def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
469
+ resblock_kernel_sizes = [3,7,11],
470
+ upsample_rates = [10, 6],
471
+ upsample_initial_channel=512,
472
+ resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
473
+ upsample_kernel_sizes=[20, 12],
474
+ gen_istft_n_fft=20, gen_istft_hop_size=5):
475
+ super().__init__()
476
+
477
+ self.decode = nn.ModuleList()
478
+
479
+ self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
480
+
481
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
482
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
483
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
484
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
485
+
486
+ self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
487
+
488
+ self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
489
+
490
+ self.asr_res = nn.Sequential(
491
+ weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
492
+ )
493
+
494
+
495
+ self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
496
+ upsample_initial_channel, resblock_dilation_sizes,
497
+ upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
498
+
499
+ def forward(self, asr, F0_curve, N, s):
500
+ if self.training:
501
+ downlist = [0, 3, 7]
502
+ F0_down = downlist[random.randint(0, 2)]
503
+ downlist = [0, 3, 7, 15]
504
+ N_down = downlist[random.randint(0, 3)]
505
+ if F0_down:
506
+ F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
507
+ if N_down:
508
+ N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
509
+
510
+
511
+ F0 = self.F0_conv(F0_curve.unsqueeze(1))
512
+ N = self.N_conv(N.unsqueeze(1))
513
+
514
+ x = torch.cat([asr, F0, N], axis=1)
515
+ x = self.encode(x, s)
516
+
517
+ asr_res = self.asr_res(asr)
518
+
519
+ res = True
520
+ for block in self.decode:
521
+ if res:
522
+ x = torch.cat([x, asr_res, F0, N], axis=1)
523
+ x = block(x, s)
524
+ if block.upsample_type != "none":
525
+ res = False
526
+
527
+ x = self.generator(x, s, F0_curve)
528
+ return x
529
+
530
+
Modules/slmadv.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import torch.nn.functional as F
4
+
5
+ class SLMAdversarialLoss(torch.nn.Module):
6
+
7
+ def __init__(self, model, wl, sampler, min_len, max_len, batch_percentage=0.5, skip_update=10, sig=1.5):
8
+ super(SLMAdversarialLoss, self).__init__()
9
+ self.model = model
10
+ self.wl = wl
11
+ self.sampler = sampler
12
+
13
+ self.min_len = min_len
14
+ self.max_len = max_len
15
+ self.batch_percentage = batch_percentage
16
+
17
+ self.sig = sig
18
+ self.skip_update = skip_update
19
+
20
+ def forward(self, iters, y_rec_gt, y_rec_gt_pred, waves, mel_input_length, ref_text, ref_lengths, use_ind, s_trg, ref_s=None):
21
+ text_mask = length_to_mask(ref_lengths).to(ref_text.device)
22
+ bert_dur = self.model.bert(ref_text, attention_mask=(~text_mask).int())
23
+ d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
24
+
25
+ if use_ind and np.random.rand() < 0.5:
26
+ s_preds = s_trg
27
+ else:
28
+ num_steps = np.random.randint(3, 5)
29
+ if ref_s is not None:
30
+ s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
31
+ embedding=bert_dur,
32
+ embedding_scale=1,
33
+ features=ref_s, # reference from the same speaker as the embedding
34
+ embedding_mask_proba=0.1,
35
+ num_steps=num_steps).squeeze(1)
36
+ else:
37
+ s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
38
+ embedding=bert_dur,
39
+ embedding_scale=1,
40
+ embedding_mask_proba=0.1,
41
+ num_steps=num_steps).squeeze(1)
42
+
43
+ s_dur = s_preds[:, 128:]
44
+ s = s_preds[:, :128]
45
+
46
+ d, _ = self.model.predictor(d_en, s_dur,
47
+ ref_lengths,
48
+ torch.randn(ref_lengths.shape[0], ref_lengths.max(), 2).to(ref_text.device),
49
+ text_mask)
50
+
51
+ bib = 0
52
+
53
+ output_lengths = []
54
+ attn_preds = []
55
+
56
+ # differentiable duration modeling
57
+ for _s2s_pred, _text_length in zip(d, ref_lengths):
58
+
59
+ _s2s_pred_org = _s2s_pred[:_text_length, :]
60
+
61
+ _s2s_pred = torch.sigmoid(_s2s_pred_org)
62
+ _dur_pred = _s2s_pred.sum(axis=-1)
63
+
64
+ l = int(torch.round(_s2s_pred.sum()).item())
65
+ t = torch.arange(0, l).expand(l)
66
+
67
+ t = torch.arange(0, l).unsqueeze(0).expand((len(_s2s_pred), l)).to(ref_text.device)
68
+ loc = torch.cumsum(_dur_pred, dim=0) - _dur_pred / 2
69
+
70
+ h = torch.exp(-0.5 * torch.square(t - (l - loc.unsqueeze(-1))) / (self.sig)**2)
71
+
72
+ out = torch.nn.functional.conv1d(_s2s_pred_org.unsqueeze(0),
73
+ h.unsqueeze(1),
74
+ padding=h.shape[-1] - 1, groups=int(_text_length))[..., :l]
75
+ attn_preds.append(F.softmax(out.squeeze(), dim=0))
76
+
77
+ output_lengths.append(l)
78
+
79
+ max_len = max(output_lengths)
80
+
81
+ with torch.no_grad():
82
+ t_en = self.model.text_encoder(ref_text, ref_lengths, text_mask)
83
+
84
+ s2s_attn = torch.zeros(len(ref_lengths), int(ref_lengths.max()), max_len).to(ref_text.device)
85
+ for bib in range(len(output_lengths)):
86
+ s2s_attn[bib, :ref_lengths[bib], :output_lengths[bib]] = attn_preds[bib]
87
+
88
+ asr_pred = t_en @ s2s_attn
89
+
90
+ _, p_pred = self.model.predictor(d_en, s_dur,
91
+ ref_lengths,
92
+ s2s_attn,
93
+ text_mask)
94
+
95
+ mel_len = max(int(min(output_lengths) / 2 - 1), self.min_len // 2)
96
+ mel_len = min(mel_len, self.max_len // 2)
97
+
98
+ # get clips
99
+
100
+ en = []
101
+ p_en = []
102
+ sp = []
103
+
104
+ F0_fakes = []
105
+ N_fakes = []
106
+
107
+ wav = []
108
+
109
+ for bib in range(len(output_lengths)):
110
+ mel_length_pred = output_lengths[bib]
111
+ mel_length_gt = int(mel_input_length[bib].item() / 2)
112
+ if mel_length_gt <= mel_len or mel_length_pred <= mel_len:
113
+ continue
114
+
115
+ sp.append(s_preds[bib])
116
+
117
+ random_start = np.random.randint(0, mel_length_pred - mel_len)
118
+ en.append(asr_pred[bib, :, random_start:random_start+mel_len])
119
+ p_en.append(p_pred[bib, :, random_start:random_start+mel_len])
120
+
121
+ # get ground truth clips
122
+ random_start = np.random.randint(0, mel_length_gt - mel_len)
123
+ y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
124
+ wav.append(torch.from_numpy(y).to(ref_text.device))
125
+
126
+ if len(wav) >= self.batch_percentage * len(waves): # prevent OOM due to longer lengths
127
+ break
128
+
129
+ if len(sp) <= 1:
130
+ return None
131
+
132
+ sp = torch.stack(sp)
133
+ wav = torch.stack(wav).float()
134
+ en = torch.stack(en)
135
+ p_en = torch.stack(p_en)
136
+
137
+ F0_fake, N_fake = self.model.predictor.F0Ntrain(p_en, sp[:, 128:])
138
+ y_pred = self.model.decoder(en, F0_fake, N_fake, sp[:, :128])
139
+
140
+ # discriminator loss
141
+ if (iters + 1) % self.skip_update == 0:
142
+ if np.random.randint(0, 2) == 0:
143
+ wav = y_rec_gt_pred
144
+ use_rec = True
145
+ else:
146
+ use_rec = False
147
+
148
+ crop_size = min(wav.size(-1), y_pred.size(-1))
149
+ if use_rec: # use reconstructed (shorter lengths), do length invariant regularization
150
+ if wav.size(-1) > y_pred.size(-1):
151
+ real_GP = wav[:, : , :crop_size]
152
+ out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
153
+ out_org = self.wl.discriminator_forward(wav.detach().squeeze())
154
+ loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])
155
+
156
+ if np.random.randint(0, 2) == 0:
157
+ d_loss = self.wl.discriminator(real_GP.detach().squeeze(), y_pred.detach().squeeze()).mean()
158
+ else:
159
+ d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
160
+ else:
161
+ real_GP = y_pred[:, : , :crop_size]
162
+ out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
163
+ out_org = self.wl.discriminator_forward(y_pred.detach().squeeze())
164
+ loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])
165
+
166
+ if np.random.randint(0, 2) == 0:
167
+ d_loss = self.wl.discriminator(wav.detach().squeeze(), real_GP.detach().squeeze()).mean()
168
+ else:
169
+ d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
170
+
171
+ # regularization (ignore length variation)
172
+ d_loss += loss_reg
173
+
174
+ out_gt = self.wl.discriminator_forward(y_rec_gt.detach().squeeze())
175
+ out_rec = self.wl.discriminator_forward(y_rec_gt_pred.detach().squeeze())
176
+
177
+ # regularization (ignore reconstruction artifacts)
178
+ d_loss += F.l1_loss(out_gt, out_rec)
179
+
180
+ else:
181
+ d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
182
+ else:
183
+ d_loss = 0
184
+
185
+ # generator loss
186
+ gen_loss = self.wl.generator(y_pred.squeeze())
187
+
188
+ gen_loss = gen_loss.mean()
189
+
190
+ return d_loss, gen_loss, y_pred.detach().cpu().numpy()
191
+
192
+ def length_to_mask(lengths):
193
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
194
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
195
+ return mask
Modules/utils.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def init_weights(m, mean=0.0, std=0.01):
2
+ classname = m.__class__.__name__
3
+ if classname.find("Conv") != -1:
4
+ m.weight.data.normal_(mean, std)
5
+
6
+
7
+ def apply_weight_norm(m):
8
+ classname = m.__class__.__name__
9
+ if classname.find("Conv") != -1:
10
+ weight_norm(m)
11
+
12
+
13
+ def get_padding(kernel_size, dilation=1):
14
+ return int((kernel_size*dilation - dilation)/2)
README (2).md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # StyleTTS 2: Towards Human-Level Text-to-Speech through Style Diffusion and Adversarial Training with Large Speech Language Models
2
+
3
+ ### Yinghao Aaron Li, Cong Han, Vinay S. Raghavan, Gavin Mischler, Nima Mesgarani
4
+
5
+ > In this paper, we present StyleTTS 2, a text-to-speech (TTS) model that leverages style diffusion and adversarial training with large speech language models (SLMs) to achieve human-level TTS synthesis. StyleTTS 2 differs from its predecessor by modeling styles as a latent random variable through diffusion models to generate the most suitable style for the text without requiring reference speech, achieving efficient latent diffusion while benefiting from the diverse speech synthesis offered by diffusion models. Furthermore, we employ large pre-trained SLMs, such as WavLM, as discriminators with our novel differentiable duration modeling for end-to-end training, resulting in improved speech naturalness. StyleTTS 2 surpasses human recordings on the single-speaker LJSpeech dataset and matches it on the multispeaker VCTK dataset as judged by native English speakers. Moreover, when trained on the LibriTTS dataset, our model outperforms previous publicly available models for zero-shot speaker adaptation. This work achieves the first human-level TTS synthesis on both single and multispeaker datasets, showcasing the potential of style diffusion and adversarial training with large SLMs.
6
+
7
+ Paper: [https://arxiv.org/abs/2306.07691](https://arxiv.org/abs/2306.07691)
8
+
9
+ Audio samples: [https://styletts2.github.io/](https://styletts2.github.io/)
10
+
11
+ Online demo: [Hugging Face](https://huggingface.co/spaces/styletts2/styletts2) (thank [@fakerybakery](https://github.com/fakerybakery) for the wonderful online demo)
12
+
13
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/) [![Discord](https://img.shields.io/discord/1197679063150637117?logo=discord&logoColor=white&label=Join%20our%20Community)](https://discord.gg/ha8sxdG2K4)
14
+
15
+ ## TODO
16
+ - [x] Training and inference demo code for single-speaker models (LJSpeech)
17
+ - [x] Test training code for multi-speaker models (VCTK and LibriTTS)
18
+ - [x] Finish demo code for multispeaker model and upload pre-trained models
19
+ - [x] Add a finetuning script for new speakers with base pre-trained multispeaker models
20
+ - [ ] Fix DDP (accelerator) for `train_second.py` **(I have tried everything I could to fix this but had no success, so if you are willing to help, please see [#7](https://github.com/yl4579/StyleTTS2/issues/7))**
21
+
22
+ ## Pre-requisites
23
+ 1. Python >= 3.7
24
+ 2. Clone this repository:
25
+ ```bash
26
+ git clone https://github.com/yl4579/StyleTTS2.git
27
+ cd StyleTTS2
28
+ ```
29
+ 3. Install python requirements:
30
+ ```bash
31
+ pip install -r requirements.txt
32
+ ```
33
+ On Windows add:
34
+ ```bash
35
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 -U
36
+ ```
37
+ Also install phonemizer and espeak if you want to run the demo:
38
+ ```bash
39
+ pip install phonemizer
40
+ sudo apt-get install espeak-ng
41
+ ```
42
+ 4. Download and extract the [LJSpeech dataset](https://keithito.com/LJ-Speech-Dataset/), unzip to the data folder and upsample the data to 24 kHz. The text aligner and pitch extractor are pre-trained on 24 kHz data, but you can easily change the preprocessing and re-train them using your own preprocessing.
43
+ For LibriTTS, you will need to combine train-clean-360 with train-clean-100 and rename the folder train-clean-460 (see [val_list_libritts.txt](https://github.com/yl4579/StyleTTS/blob/main/Data/val_list_libritts.txt) as an example).
44
+
45
+ ## Training
46
+ First stage training:
47
+ ```bash
48
+ accelerate launch train_first.py --config_path ./Configs/config.yml
49
+ ```
50
+ Second stage training **(DDP version not working, so the current version uses DP, again see [#7](https://github.com/yl4579/StyleTTS2/issues/7) if you want to help)**:
51
+ ```bash
52
+ python train_second.py --config_path ./Configs/config.yml
53
+ ```
54
+ You can run both consecutively and it will train both the first and second stages. The model will be saved in the format "epoch_1st_%05d.pth" and "epoch_2nd_%05d.pth". Checkpoints and Tensorboard logs will be saved at `log_dir`.
55
+
56
+ The data list format needs to be `filename.wav|transcription|speaker`, see [val_list.txt](https://github.com/yl4579/StyleTTS2/blob/main/Data/val_list.txt) as an example. The speaker labels are needed for multi-speaker models because we need to sample reference audio for style diffusion model training.
57
+
58
+ ### Important Configurations
59
+ In [config.yml](https://github.com/yl4579/StyleTTS2/blob/main/Configs/config.yml), there are a few important configurations to take care of:
60
+ - `OOD_data`: The path for out-of-distribution texts for SLM adversarial training. The format should be `text|anything`.
61
+ - `min_length`: Minimum length of OOD texts for training. This is to make sure the synthesized speech has a minimum length.
62
+ - `max_len`: Maximum length of audio for training. The unit is frame. Since the default hop size is 300, one frame is approximately `300 / 24000` (0.0125) second. Lowering this if you encounter the out-of-memory issue.
63
+ - `multispeaker`: Set to true if you want to train a multispeaker model. This is needed because the architecture of the denoiser is different for single and multispeaker models.
64
+ - `batch_percentage`: This is to make sure during SLM adversarial training there are no out-of-memory (OOM) issues. If you encounter OOM problem, please set a lower number for this.
65
+
66
+ ### Pre-trained modules
67
+ In [Utils](https://github.com/yl4579/StyleTTS2/tree/main/Utils) folder, there are three pre-trained models:
68
+ - **[ASR](https://github.com/yl4579/StyleTTS2/tree/main/Utils/ASR) folder**: It contains the pre-trained text aligner, which was pre-trained on English (LibriTTS), Japanese (JVS), and Chinese (AiShell) corpus. It works well for most other languages without fine-tuning, but you can always train your own text aligner with the code here: [yl4579/AuxiliaryASR](https://github.com/yl4579/AuxiliaryASR).
69
+ - **[JDC](https://github.com/yl4579/StyleTTS2/tree/main/Utils/JDC) folder**: It contains the pre-trained pitch extractor, which was pre-trained on English (LibriTTS) corpus only. However, it works well for other languages too because F0 is independent of language. If you want to train on singing corpus, it is recommended to train a new pitch extractor with the code here: [yl4579/PitchExtractor](https://github.com/yl4579/PitchExtractor).
70
+ - **[PLBERT](https://github.com/yl4579/StyleTTS2/tree/main/Utils/PLBERT) folder**: It contains the pre-trained [PL-BERT](https://arxiv.org/abs/2301.08810) model, which was pre-trained on English (Wikipedia) corpus only. It probably does not work very well on other languages, so you will need to train a different PL-BERT for different languages using the repo here: [yl4579/PL-BERT](https://github.com/yl4579/PL-BERT). You can also use the [multilingual PL-BERT](https://huggingface.co/papercup-ai/multilingual-pl-bert) which supports 14 languages.
71
+
72
+ ### Common Issues
73
+ - **Loss becomes NaN**: If it is the first stage, please make sure you do not use mixed precision, as it can cause loss becoming NaN for some particular datasets when the batch size is not set properly (need to be more than 16 to work well). For the second stage, please also experiment with different batch sizes, with higher batch sizes being more likely to cause NaN loss values. We recommend the batch size to be 16. You can refer to issues [#10](https://github.com/yl4579/StyleTTS2/issues/10) and [#11](https://github.com/yl4579/StyleTTS2/issues/11) for more details.
74
+ - **Out of memory**: Please either use lower `batch_size` or `max_len`. You may refer to issue [#10](https://github.com/yl4579/StyleTTS2/issues/10) for more information.
75
+ - **Non-English dataset**: You can train on any language you want, but you will need to use a pre-trained PL-BERT model for that language. We have a pre-trained [multilingual PL-BERT](https://huggingface.co/papercup-ai/multilingual-pl-bert) that supports 14 languages. You may refer to [yl4579/StyleTTS#10](https://github.com/yl4579/StyleTTS/issues/10) and [#70](https://github.com/yl4579/StyleTTS2/issues/70) for some examples to train on Chinese datasets.
76
+
77
+ ## Finetuning
78
+ The script is modified from `train_second.py` which uses DP, as DDP does not work for `train_second.py`. Please see the bold section above if you are willing to help with this problem.
79
+ ```bash
80
+ python train_finetune.py --config_path ./Configs/config_ft.yml
81
+ ```
82
+ Please make sure you have the LibriTTS checkpoint downloaded and unzipped under the folder. The default configuration `config_ft.yml` finetunes on LJSpeech with 1 hour of speech data (around 1k samples) for 50 epochs. This took about 4 hours to finish on four NVidia A100. The quality is slightly worse (similar to NaturalSpeech on LJSpeech) than LJSpeech model trained from scratch with 24 hours of speech data, which took around 2.5 days to finish on four A100. The samples can be found at [#65 (comment)](https://github.com/yl4579/StyleTTS2/discussions/65#discussioncomment-7668393).
83
+
84
+ If you are using a **single GPU** (because the script doesn't work with DDP) and want to save training speed and VRAM, you can do (thank [@korakoe](https://github.com/korakoe) for making the script at [#100](https://github.com/yl4579/StyleTTS2/pull/100)):
85
+ ```bash
86
+ accelerate launch --mixed_precision=fp16 --num_processes=1 train_finetune_accelerate.py --config_path ./Configs/config_ft.yml
87
+ ```
88
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/Colab/StyleTTS2_Finetune_Demo.ipynb)
89
+
90
+ ### Common Issues
91
+ [@Kreevoz](https://github.com/Kreevoz) has made detailed notes on common issues in finetuning, with suggestions in maximizing audio quality: [#81](https://github.com/yl4579/StyleTTS2/discussions/81). Some of these also apply to training from scratch. [@IIEleven11](https://github.com/IIEleven11) has also made a guideline for fine-tuning: [#128](https://github.com/yl4579/StyleTTS2/discussions/128).
92
+
93
+ - **Out of memory after `joint_epoch`**: This is likely because your GPU RAM is not big enough for SLM adversarial training run. You may skip that but the quality could be worse. Setting `joint_epoch` a larger number than `epochs` could skip the SLM advesariral training.
94
+
95
+ ## Inference
96
+ Please refer to [Inference_LJSpeech.ipynb](https://github.com/yl4579/StyleTTS2/blob/main/Demo/Inference_LJSpeech.ipynb) (single-speaker) and [Inference_LibriTTS.ipynb](https://github.com/yl4579/StyleTTS2/blob/main/Demo/Inference_LibriTTS.ipynb) (multi-speaker) for details. For LibriTTS, you will also need to download [reference_audio.zip](https://huggingface.co/yl4579/StyleTTS2-LibriTTS/resolve/main/reference_audio.zip) and unzip it under the `demo` before running the demo.
97
+
98
+ - The pretrained StyleTTS 2 on LJSpeech corpus in 24 kHz can be downloaded at [https://huggingface.co/yl4579/StyleTTS2-LJSpeech/tree/main](https://huggingface.co/yl4579/StyleTTS2-LJSpeech/tree/main).
99
+
100
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/Colab/StyleTTS2_Demo_LJSpeech.ipynb)
101
+
102
+ - The pretrained StyleTTS 2 model on LibriTTS can be downloaded at [https://huggingface.co/yl4579/StyleTTS2-LibriTTS/tree/main](https://huggingface.co/yl4579/StyleTTS2-LibriTTS/tree/main).
103
+
104
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/Colab/StyleTTS2_Demo_LibriTTS.ipynb)
105
+
106
+
107
+ You can import StyleTTS 2 and run it in your own code. However, the inference depends on a GPL-licensed package, so it is not included directly in this repository. A [GPL-licensed fork](https://github.com/NeuralVox/StyleTTS2) has an importable script, as well as an experimental streaming API, etc. A [fully MIT-licensed package](https://pypi.org/project/styletts2/) that uses gruut (albeit lower quality due to mismatch between phonemizer and gruut) is also available.
108
+
109
+ ***Before using these pre-trained models, you agree to inform the listeners that the speech samples are synthesized by the pre-trained models, unless you have the permission to use the voice you synthesize. That is, you agree to only use voices whose speakers grant the permission to have their voice cloned, either directly or by license before making synthesized voices public, or you have to publicly announce that these voices are synthesized if you do not have the permission to use these voices.***
110
+
111
+ ### Common Issues
112
+ - **High-pitched background noise**: This is caused by numerical float differences in older GPUs. For more details, please refer to issue [#13](https://github.com/yl4579/StyleTTS2/issues/13). Basically, you will need to use more modern GPUs or do inference on CPUs.
113
+ - **Pre-trained model license**: You only need to abide by the above rules if you use **the pre-trained models** and the voices are **NOT** in the training set, i.e., your reference speakers are not from any open access dataset. For more details of rules to use the pre-trained models, please see [#37](https://github.com/yl4579/StyleTTS2/issues/37).
114
+
115
+ ## References
116
+ - [archinetai/audio-diffusion-pytorch](https://github.com/archinetai/audio-diffusion-pytorch)
117
+ - [jik876/hifi-gan](https://github.com/jik876/hifi-gan)
118
+ - [rishikksh20/iSTFTNet-pytorch](https://github.com/rishikksh20/iSTFTNet-pytorch)
119
+ - [nii-yamagishilab/project-NN-Pytorch-scripts/project/01-nsf](https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/01-nsf)
120
+
121
+ ## License
122
+
123
+ Code: MIT License
124
+
125
+ Pre-Trained Models: Before using these pre-trained models, you agree to inform the listeners that the speech samples are synthesized by the pre-trained models, unless you have the permission to use the voice you synthesize. That is, you agree to only use voices whose speakers grant the permission to have their voice cloned, either directly or by license before making synthesized voices public, or you have to publicly announce that these voices are synthesized if you do not have the permission to use these voices.
Utils/ASR/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
Utils/ASR/config.yml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "logs/20201006"
2
+ save_freq: 5
3
+ device: "cuda"
4
+ epochs: 180
5
+ batch_size: 64
6
+ pretrained_model: ""
7
+ train_data: "ASRDataset/train_list.txt"
8
+ val_data: "ASRDataset/val_list.txt"
9
+
10
+ dataset_params:
11
+ data_augmentation: false
12
+
13
+ preprocess_parasm:
14
+ sr: 24000
15
+ spect_params:
16
+ n_fft: 2048
17
+ win_length: 1200
18
+ hop_length: 300
19
+ mel_params:
20
+ n_mels: 80
21
+
22
+ model_params:
23
+ input_dim: 80
24
+ hidden_dim: 256
25
+ n_token: 178
26
+ token_embedding_dim: 512
27
+
28
+ optimizer_params:
29
+ lr: 0.0005
Utils/ASR/epoch_00080.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fedd55a1234b0c56e1e8b509c74edf3a5e2f27106a66038a4a946047a775bd6c
3
+ size 94552811
Utils/ASR/layers.py ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from typing import Optional, Any
5
+ from torch import Tensor
6
+ import torch.nn.functional as F
7
+ import torchaudio
8
+ import torchaudio.functional as audio_F
9
+
10
+ import random
11
+ random.seed(0)
12
+
13
+
14
+ def _get_activation_fn(activ):
15
+ if activ == 'relu':
16
+ return nn.ReLU()
17
+ elif activ == 'lrelu':
18
+ return nn.LeakyReLU(0.2)
19
+ elif activ == 'swish':
20
+ return lambda x: x*torch.sigmoid(x)
21
+ else:
22
+ raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
23
+
24
+ class LinearNorm(torch.nn.Module):
25
+ def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
26
+ super(LinearNorm, self).__init__()
27
+ self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
28
+
29
+ torch.nn.init.xavier_uniform_(
30
+ self.linear_layer.weight,
31
+ gain=torch.nn.init.calculate_gain(w_init_gain))
32
+
33
+ def forward(self, x):
34
+ return self.linear_layer(x)
35
+
36
+
37
+ class ConvNorm(torch.nn.Module):
38
+ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
39
+ padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
40
+ super(ConvNorm, self).__init__()
41
+ if padding is None:
42
+ assert(kernel_size % 2 == 1)
43
+ padding = int(dilation * (kernel_size - 1) / 2)
44
+
45
+ self.conv = torch.nn.Conv1d(in_channels, out_channels,
46
+ kernel_size=kernel_size, stride=stride,
47
+ padding=padding, dilation=dilation,
48
+ bias=bias)
49
+
50
+ torch.nn.init.xavier_uniform_(
51
+ self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
52
+
53
+ def forward(self, signal):
54
+ conv_signal = self.conv(signal)
55
+ return conv_signal
56
+
57
+ class CausualConv(nn.Module):
58
+ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
59
+ super(CausualConv, self).__init__()
60
+ if padding is None:
61
+ assert(kernel_size % 2 == 1)
62
+ padding = int(dilation * (kernel_size - 1) / 2) * 2
63
+ else:
64
+ self.padding = padding * 2
65
+ self.conv = nn.Conv1d(in_channels, out_channels,
66
+ kernel_size=kernel_size, stride=stride,
67
+ padding=self.padding,
68
+ dilation=dilation,
69
+ bias=bias)
70
+
71
+ torch.nn.init.xavier_uniform_(
72
+ self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
73
+
74
+ def forward(self, x):
75
+ x = self.conv(x)
76
+ x = x[:, :, :-self.padding]
77
+ return x
78
+
79
+ class CausualBlock(nn.Module):
80
+ def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
81
+ super(CausualBlock, self).__init__()
82
+ self.blocks = nn.ModuleList([
83
+ self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
84
+ for i in range(n_conv)])
85
+
86
+ def forward(self, x):
87
+ for block in self.blocks:
88
+ res = x
89
+ x = block(x)
90
+ x += res
91
+ return x
92
+
93
+ def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
94
+ layers = [
95
+ CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
96
+ _get_activation_fn(activ),
97
+ nn.BatchNorm1d(hidden_dim),
98
+ nn.Dropout(p=dropout_p),
99
+ CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
100
+ _get_activation_fn(activ),
101
+ nn.Dropout(p=dropout_p)
102
+ ]
103
+ return nn.Sequential(*layers)
104
+
105
+ class ConvBlock(nn.Module):
106
+ def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
107
+ super().__init__()
108
+ self._n_groups = 8
109
+ self.blocks = nn.ModuleList([
110
+ self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
111
+ for i in range(n_conv)])
112
+
113
+
114
+ def forward(self, x):
115
+ for block in self.blocks:
116
+ res = x
117
+ x = block(x)
118
+ x += res
119
+ return x
120
+
121
+ def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
122
+ layers = [
123
+ ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
124
+ _get_activation_fn(activ),
125
+ nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
126
+ nn.Dropout(p=dropout_p),
127
+ ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
128
+ _get_activation_fn(activ),
129
+ nn.Dropout(p=dropout_p)
130
+ ]
131
+ return nn.Sequential(*layers)
132
+
133
+ class LocationLayer(nn.Module):
134
+ def __init__(self, attention_n_filters, attention_kernel_size,
135
+ attention_dim):
136
+ super(LocationLayer, self).__init__()
137
+ padding = int((attention_kernel_size - 1) / 2)
138
+ self.location_conv = ConvNorm(2, attention_n_filters,
139
+ kernel_size=attention_kernel_size,
140
+ padding=padding, bias=False, stride=1,
141
+ dilation=1)
142
+ self.location_dense = LinearNorm(attention_n_filters, attention_dim,
143
+ bias=False, w_init_gain='tanh')
144
+
145
+ def forward(self, attention_weights_cat):
146
+ processed_attention = self.location_conv(attention_weights_cat)
147
+ processed_attention = processed_attention.transpose(1, 2)
148
+ processed_attention = self.location_dense(processed_attention)
149
+ return processed_attention
150
+
151
+
152
+ class Attention(nn.Module):
153
+ def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
154
+ attention_location_n_filters, attention_location_kernel_size):
155
+ super(Attention, self).__init__()
156
+ self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
157
+ bias=False, w_init_gain='tanh')
158
+ self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
159
+ w_init_gain='tanh')
160
+ self.v = LinearNorm(attention_dim, 1, bias=False)
161
+ self.location_layer = LocationLayer(attention_location_n_filters,
162
+ attention_location_kernel_size,
163
+ attention_dim)
164
+ self.score_mask_value = -float("inf")
165
+
166
+ def get_alignment_energies(self, query, processed_memory,
167
+ attention_weights_cat):
168
+ """
169
+ PARAMS
170
+ ------
171
+ query: decoder output (batch, n_mel_channels * n_frames_per_step)
172
+ processed_memory: processed encoder outputs (B, T_in, attention_dim)
173
+ attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
174
+ RETURNS
175
+ -------
176
+ alignment (batch, max_time)
177
+ """
178
+
179
+ processed_query = self.query_layer(query.unsqueeze(1))
180
+ processed_attention_weights = self.location_layer(attention_weights_cat)
181
+ energies = self.v(torch.tanh(
182
+ processed_query + processed_attention_weights + processed_memory))
183
+
184
+ energies = energies.squeeze(-1)
185
+ return energies
186
+
187
+ def forward(self, attention_hidden_state, memory, processed_memory,
188
+ attention_weights_cat, mask):
189
+ """
190
+ PARAMS
191
+ ------
192
+ attention_hidden_state: attention rnn last output
193
+ memory: encoder outputs
194
+ processed_memory: processed encoder outputs
195
+ attention_weights_cat: previous and cummulative attention weights
196
+ mask: binary mask for padded data
197
+ """
198
+ alignment = self.get_alignment_energies(
199
+ attention_hidden_state, processed_memory, attention_weights_cat)
200
+
201
+ if mask is not None:
202
+ alignment.data.masked_fill_(mask, self.score_mask_value)
203
+
204
+ attention_weights = F.softmax(alignment, dim=1)
205
+ attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
206
+ attention_context = attention_context.squeeze(1)
207
+
208
+ return attention_context, attention_weights
209
+
210
+
211
+ class ForwardAttentionV2(nn.Module):
212
+ def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
213
+ attention_location_n_filters, attention_location_kernel_size):
214
+ super(ForwardAttentionV2, self).__init__()
215
+ self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
216
+ bias=False, w_init_gain='tanh')
217
+ self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
218
+ w_init_gain='tanh')
219
+ self.v = LinearNorm(attention_dim, 1, bias=False)
220
+ self.location_layer = LocationLayer(attention_location_n_filters,
221
+ attention_location_kernel_size,
222
+ attention_dim)
223
+ self.score_mask_value = -float(1e20)
224
+
225
+ def get_alignment_energies(self, query, processed_memory,
226
+ attention_weights_cat):
227
+ """
228
+ PARAMS
229
+ ------
230
+ query: decoder output (batch, n_mel_channels * n_frames_per_step)
231
+ processed_memory: processed encoder outputs (B, T_in, attention_dim)
232
+ attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
233
+ RETURNS
234
+ -------
235
+ alignment (batch, max_time)
236
+ """
237
+
238
+ processed_query = self.query_layer(query.unsqueeze(1))
239
+ processed_attention_weights = self.location_layer(attention_weights_cat)
240
+ energies = self.v(torch.tanh(
241
+ processed_query + processed_attention_weights + processed_memory))
242
+
243
+ energies = energies.squeeze(-1)
244
+ return energies
245
+
246
+ def forward(self, attention_hidden_state, memory, processed_memory,
247
+ attention_weights_cat, mask, log_alpha):
248
+ """
249
+ PARAMS
250
+ ------
251
+ attention_hidden_state: attention rnn last output
252
+ memory: encoder outputs
253
+ processed_memory: processed encoder outputs
254
+ attention_weights_cat: previous and cummulative attention weights
255
+ mask: binary mask for padded data
256
+ """
257
+ log_energy = self.get_alignment_energies(
258
+ attention_hidden_state, processed_memory, attention_weights_cat)
259
+
260
+ #log_energy =
261
+
262
+ if mask is not None:
263
+ log_energy.data.masked_fill_(mask, self.score_mask_value)
264
+
265
+ #attention_weights = F.softmax(alignment, dim=1)
266
+
267
+ #content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
268
+ #log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
269
+
270
+ #log_total_score = log_alpha + content_score
271
+
272
+ #previous_attention_weights = attention_weights_cat[:,0,:]
273
+
274
+ log_alpha_shift_padded = []
275
+ max_time = log_energy.size(1)
276
+ for sft in range(2):
277
+ shifted = log_alpha[:,:max_time-sft]
278
+ shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
279
+ log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
280
+
281
+ biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
282
+
283
+ log_alpha_new = biased + log_energy
284
+
285
+ attention_weights = F.softmax(log_alpha_new, dim=1)
286
+
287
+ attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
288
+ attention_context = attention_context.squeeze(1)
289
+
290
+ return attention_context, attention_weights, log_alpha_new
291
+
292
+
293
+ class PhaseShuffle2d(nn.Module):
294
+ def __init__(self, n=2):
295
+ super(PhaseShuffle2d, self).__init__()
296
+ self.n = n
297
+ self.random = random.Random(1)
298
+
299
+ def forward(self, x, move=None):
300
+ # x.size = (B, C, M, L)
301
+ if move is None:
302
+ move = self.random.randint(-self.n, self.n)
303
+
304
+ if move == 0:
305
+ return x
306
+ else:
307
+ left = x[:, :, :, :move]
308
+ right = x[:, :, :, move:]
309
+ shuffled = torch.cat([right, left], dim=3)
310
+ return shuffled
311
+
312
+ class PhaseShuffle1d(nn.Module):
313
+ def __init__(self, n=2):
314
+ super(PhaseShuffle1d, self).__init__()
315
+ self.n = n
316
+ self.random = random.Random(1)
317
+
318
+ def forward(self, x, move=None):
319
+ # x.size = (B, C, M, L)
320
+ if move is None:
321
+ move = self.random.randint(-self.n, self.n)
322
+
323
+ if move == 0:
324
+ return x
325
+ else:
326
+ left = x[:, :, :move]
327
+ right = x[:, :, move:]
328
+ shuffled = torch.cat([right, left], dim=2)
329
+
330
+ return shuffled
331
+
332
+ class MFCC(nn.Module):
333
+ def __init__(self, n_mfcc=40, n_mels=80):
334
+ super(MFCC, self).__init__()
335
+ self.n_mfcc = n_mfcc
336
+ self.n_mels = n_mels
337
+ self.norm = 'ortho'
338
+ dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
339
+ self.register_buffer('dct_mat', dct_mat)
340
+
341
+ def forward(self, mel_specgram):
342
+ if len(mel_specgram.shape) == 2:
343
+ mel_specgram = mel_specgram.unsqueeze(0)
344
+ unsqueezed = True
345
+ else:
346
+ unsqueezed = False
347
+ # (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
348
+ # -> (channel, time, n_mfcc).tranpose(...)
349
+ mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
350
+
351
+ # unpack batch
352
+ if unsqueezed:
353
+ mfcc = mfcc.squeeze(0)
354
+ return mfcc
Utils/ASR/models.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import TransformerEncoder
5
+ import torch.nn.functional as F
6
+ from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
7
+
8
+ class ASRCNN(nn.Module):
9
+ def __init__(self,
10
+ input_dim=80,
11
+ hidden_dim=256,
12
+ n_token=35,
13
+ n_layers=6,
14
+ token_embedding_dim=256,
15
+
16
+ ):
17
+ super().__init__()
18
+ self.n_token = n_token
19
+ self.n_down = 1
20
+ self.to_mfcc = MFCC()
21
+ self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
22
+ self.cnns = nn.Sequential(
23
+ *[nn.Sequential(
24
+ ConvBlock(hidden_dim),
25
+ nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
26
+ ) for n in range(n_layers)])
27
+ self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
28
+ self.ctc_linear = nn.Sequential(
29
+ LinearNorm(hidden_dim//2, hidden_dim),
30
+ nn.ReLU(),
31
+ LinearNorm(hidden_dim, n_token))
32
+ self.asr_s2s = ASRS2S(
33
+ embedding_dim=token_embedding_dim,
34
+ hidden_dim=hidden_dim//2,
35
+ n_token=n_token)
36
+
37
+ def forward(self, x, src_key_padding_mask=None, text_input=None):
38
+ x = self.to_mfcc(x)
39
+ x = self.init_cnn(x)
40
+ x = self.cnns(x)
41
+ x = self.projection(x)
42
+ x = x.transpose(1, 2)
43
+ ctc_logit = self.ctc_linear(x)
44
+ if text_input is not None:
45
+ _, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
46
+ return ctc_logit, s2s_logit, s2s_attn
47
+ else:
48
+ return ctc_logit
49
+
50
+ def get_feature(self, x):
51
+ x = self.to_mfcc(x.squeeze(1))
52
+ x = self.init_cnn(x)
53
+ x = self.cnns(x)
54
+ x = self.projection(x)
55
+ return x
56
+
57
+ def length_to_mask(self, lengths):
58
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
59
+ mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
60
+ return mask
61
+
62
+ def get_future_mask(self, out_length, unmask_future_steps=0):
63
+ """
64
+ Args:
65
+ out_length (int): returned mask shape is (out_length, out_length).
66
+ unmask_futre_steps (int): unmasking future step size.
67
+ Return:
68
+ mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
69
+ """
70
+ index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
71
+ mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
72
+ return mask
73
+
74
+ class ASRS2S(nn.Module):
75
+ def __init__(self,
76
+ embedding_dim=256,
77
+ hidden_dim=512,
78
+ n_location_filters=32,
79
+ location_kernel_size=63,
80
+ n_token=40):
81
+ super(ASRS2S, self).__init__()
82
+ self.embedding = nn.Embedding(n_token, embedding_dim)
83
+ val_range = math.sqrt(6 / hidden_dim)
84
+ self.embedding.weight.data.uniform_(-val_range, val_range)
85
+
86
+ self.decoder_rnn_dim = hidden_dim
87
+ self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
88
+ self.attention_layer = Attention(
89
+ self.decoder_rnn_dim,
90
+ hidden_dim,
91
+ hidden_dim,
92
+ n_location_filters,
93
+ location_kernel_size
94
+ )
95
+ self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
96
+ self.project_to_hidden = nn.Sequential(
97
+ LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
98
+ nn.Tanh())
99
+ self.sos = 1
100
+ self.eos = 2
101
+
102
+ def initialize_decoder_states(self, memory, mask):
103
+ """
104
+ moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
105
+ """
106
+ B, L, H = memory.shape
107
+ self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
108
+ self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
109
+ self.attention_weights = torch.zeros((B, L)).type_as(memory)
110
+ self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
111
+ self.attention_context = torch.zeros((B, H)).type_as(memory)
112
+ self.memory = memory
113
+ self.processed_memory = self.attention_layer.memory_layer(memory)
114
+ self.mask = mask
115
+ self.unk_index = 3
116
+ self.random_mask = 0.1
117
+
118
+ def forward(self, memory, memory_mask, text_input):
119
+ """
120
+ moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
121
+ moemory_mask.shape = (B, L, )
122
+ texts_input.shape = (B, T)
123
+ """
124
+ self.initialize_decoder_states(memory, memory_mask)
125
+ # text random mask
126
+ random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
127
+ _text_input = text_input.clone()
128
+ _text_input.masked_fill_(random_mask, self.unk_index)
129
+ decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
130
+ start_embedding = self.embedding(
131
+ torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
132
+ decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
133
+
134
+ hidden_outputs, logit_outputs, alignments = [], [], []
135
+ while len(hidden_outputs) < decoder_inputs.size(0):
136
+
137
+ decoder_input = decoder_inputs[len(hidden_outputs)]
138
+ hidden, logit, attention_weights = self.decode(decoder_input)
139
+ hidden_outputs += [hidden]
140
+ logit_outputs += [logit]
141
+ alignments += [attention_weights]
142
+
143
+ hidden_outputs, logit_outputs, alignments = \
144
+ self.parse_decoder_outputs(
145
+ hidden_outputs, logit_outputs, alignments)
146
+
147
+ return hidden_outputs, logit_outputs, alignments
148
+
149
+
150
+ def decode(self, decoder_input):
151
+
152
+ cell_input = torch.cat((decoder_input, self.attention_context), -1)
153
+ self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
154
+ cell_input,
155
+ (self.decoder_hidden, self.decoder_cell))
156
+
157
+ attention_weights_cat = torch.cat(
158
+ (self.attention_weights.unsqueeze(1),
159
+ self.attention_weights_cum.unsqueeze(1)),dim=1)
160
+
161
+ self.attention_context, self.attention_weights = self.attention_layer(
162
+ self.decoder_hidden,
163
+ self.memory,
164
+ self.processed_memory,
165
+ attention_weights_cat,
166
+ self.mask)
167
+
168
+ self.attention_weights_cum += self.attention_weights
169
+
170
+ hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
171
+ hidden = self.project_to_hidden(hidden_and_context)
172
+
173
+ # dropout to increasing g
174
+ logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
175
+
176
+ return hidden, logit, self.attention_weights
177
+
178
+ def parse_decoder_outputs(self, hidden, logit, alignments):
179
+
180
+ # -> [B, T_out + 1, max_time]
181
+ alignments = torch.stack(alignments).transpose(0,1)
182
+ # [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
183
+ logit = torch.stack(logit).transpose(0, 1).contiguous()
184
+ hidden = torch.stack(hidden).transpose(0, 1).contiguous()
185
+
186
+ return hidden, logit, alignments
Utils/JDC/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
Utils/JDC/model.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Implementation of model from:
3
+ Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
4
+ Convolutional Recurrent Neural Networks" (2019)
5
+ Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
6
+ """
7
+ import torch
8
+ from torch import nn
9
+
10
+ class JDCNet(nn.Module):
11
+ """
12
+ Joint Detection and Classification Network model for singing voice melody.
13
+ """
14
+ def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
15
+ super().__init__()
16
+ self.num_class = num_class
17
+
18
+ # input = (b, 1, 31, 513), b = batch size
19
+ self.conv_block = nn.Sequential(
20
+ nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
21
+ nn.BatchNorm2d(num_features=64),
22
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
23
+ nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
24
+ )
25
+
26
+ # res blocks
27
+ self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
28
+ self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
29
+ self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
30
+
31
+ # pool block
32
+ self.pool_block = nn.Sequential(
33
+ nn.BatchNorm2d(num_features=256),
34
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
35
+ nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
36
+ nn.Dropout(p=0.2),
37
+ )
38
+
39
+ # maxpool layers (for auxiliary network inputs)
40
+ # in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
41
+ self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
42
+ # in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
43
+ self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
44
+ # in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
45
+ self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
46
+
47
+ # in = (b, 640, 31, 2), out = (b, 256, 31, 2)
48
+ self.detector_conv = nn.Sequential(
49
+ nn.Conv2d(640, 256, 1, bias=False),
50
+ nn.BatchNorm2d(256),
51
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
52
+ nn.Dropout(p=0.2),
53
+ )
54
+
55
+ # input: (b, 31, 512) - resized from (b, 256, 31, 2)
56
+ self.bilstm_classifier = nn.LSTM(
57
+ input_size=512, hidden_size=256,
58
+ batch_first=True, bidirectional=True) # (b, 31, 512)
59
+
60
+ # input: (b, 31, 512) - resized from (b, 256, 31, 2)
61
+ self.bilstm_detector = nn.LSTM(
62
+ input_size=512, hidden_size=256,
63
+ batch_first=True, bidirectional=True) # (b, 31, 512)
64
+
65
+ # input: (b * 31, 512)
66
+ self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
67
+
68
+ # input: (b * 31, 512)
69
+ self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
70
+
71
+ # initialize weights
72
+ self.apply(self.init_weights)
73
+
74
+ def get_feature_GAN(self, x):
75
+ seq_len = x.shape[-2]
76
+ x = x.float().transpose(-1, -2)
77
+
78
+ convblock_out = self.conv_block(x)
79
+
80
+ resblock1_out = self.res_block1(convblock_out)
81
+ resblock2_out = self.res_block2(resblock1_out)
82
+ resblock3_out = self.res_block3(resblock2_out)
83
+ poolblock_out = self.pool_block[0](resblock3_out)
84
+ poolblock_out = self.pool_block[1](poolblock_out)
85
+
86
+ return poolblock_out.transpose(-1, -2)
87
+
88
+ def get_feature(self, x):
89
+ seq_len = x.shape[-2]
90
+ x = x.float().transpose(-1, -2)
91
+
92
+ convblock_out = self.conv_block(x)
93
+
94
+ resblock1_out = self.res_block1(convblock_out)
95
+ resblock2_out = self.res_block2(resblock1_out)
96
+ resblock3_out = self.res_block3(resblock2_out)
97
+ poolblock_out = self.pool_block[0](resblock3_out)
98
+ poolblock_out = self.pool_block[1](poolblock_out)
99
+
100
+ return self.pool_block[2](poolblock_out)
101
+
102
+ def forward(self, x):
103
+ """
104
+ Returns:
105
+ classification_prediction, detection_prediction
106
+ sizes: (b, 31, 722), (b, 31, 2)
107
+ """
108
+ ###############################
109
+ # forward pass for classifier #
110
+ ###############################
111
+ seq_len = x.shape[-1]
112
+ x = x.float().transpose(-1, -2)
113
+
114
+ convblock_out = self.conv_block(x)
115
+
116
+ resblock1_out = self.res_block1(convblock_out)
117
+ resblock2_out = self.res_block2(resblock1_out)
118
+ resblock3_out = self.res_block3(resblock2_out)
119
+
120
+
121
+ poolblock_out = self.pool_block[0](resblock3_out)
122
+ poolblock_out = self.pool_block[1](poolblock_out)
123
+ GAN_feature = poolblock_out.transpose(-1, -2)
124
+ poolblock_out = self.pool_block[2](poolblock_out)
125
+
126
+ # (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
127
+ classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
128
+ classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
129
+
130
+ classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
131
+ classifier_out = self.classifier(classifier_out)
132
+ classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
133
+
134
+ # sizes: (b, 31, 722), (b, 31, 2)
135
+ # classifier output consists of predicted pitch classes per frame
136
+ # detector output consists of: (isvoice, notvoice) estimates per frame
137
+ return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
138
+
139
+ @staticmethod
140
+ def init_weights(m):
141
+ if isinstance(m, nn.Linear):
142
+ nn.init.kaiming_uniform_(m.weight)
143
+ if m.bias is not None:
144
+ nn.init.constant_(m.bias, 0)
145
+ elif isinstance(m, nn.Conv2d):
146
+ nn.init.xavier_normal_(m.weight)
147
+ elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
148
+ for p in m.parameters():
149
+ if p.data is None:
150
+ continue
151
+
152
+ if len(p.shape) >= 2:
153
+ nn.init.orthogonal_(p.data)
154
+ else:
155
+ nn.init.normal_(p.data)
156
+
157
+
158
+ class ResBlock(nn.Module):
159
+ def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
160
+ super().__init__()
161
+ self.downsample = in_channels != out_channels
162
+
163
+ # BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
164
+ self.pre_conv = nn.Sequential(
165
+ nn.BatchNorm2d(num_features=in_channels),
166
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
167
+ nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
168
+ )
169
+
170
+ # conv layers
171
+ self.conv = nn.Sequential(
172
+ nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
173
+ kernel_size=3, padding=1, bias=False),
174
+ nn.BatchNorm2d(out_channels),
175
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
176
+ nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
177
+ )
178
+
179
+ # 1 x 1 convolution layer to match the feature dimensions
180
+ self.conv1by1 = None
181
+ if self.downsample:
182
+ self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
183
+
184
+ def forward(self, x):
185
+ x = self.pre_conv(x)
186
+ if self.downsample:
187
+ x = self.conv(x) + self.conv1by1(x)
188
+ else:
189
+ x = self.conv(x) + x
190
+ return x
Utils/PLBERT/config.yml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log_dir: "Checkpoint"
2
+ mixed_precision: "fp16"
3
+ data_folder: "wikipedia_20220301.en.processed"
4
+ batch_size: 192
5
+ save_interval: 5000
6
+ log_interval: 10
7
+ num_process: 1 # number of GPUs
8
+ num_steps: 1000000
9
+
10
+ dataset_params:
11
+ tokenizer: "transfo-xl-wt103"
12
+ token_separator: " " # token used for phoneme separator (space)
13
+ token_mask: "M" # token used for phoneme mask (M)
14
+ word_separator: 3039 # token used for word separator (<formula>)
15
+ token_maps: "token_maps.pkl" # token map path
16
+
17
+ max_mel_length: 512 # max phoneme length
18
+
19
+ word_mask_prob: 0.15 # probability to mask the entire word
20
+ phoneme_mask_prob: 0.1 # probability to mask each phoneme
21
+ replace_prob: 0.2 # probablity to replace phonemes
22
+
23
+ model_params:
24
+ vocab_size: 178
25
+ hidden_size: 768
26
+ num_attention_heads: 12
27
+ intermediate_size: 2048
28
+ max_position_embeddings: 512
29
+ num_hidden_layers: 12
30
+ dropout: 0.1
Utils/PLBERT/util.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import yaml
3
+ import torch
4
+ from transformers import AlbertConfig, AlbertModel
5
+
6
+ class CustomAlbert(AlbertModel):
7
+ def forward(self, *args, **kwargs):
8
+ # Call the original forward method
9
+ outputs = super().forward(*args, **kwargs)
10
+
11
+ # Only return the last_hidden_state
12
+ return outputs.last_hidden_state
13
+
14
+
15
+ def load_plbert(log_dir):
16
+ config_path = os.path.join(log_dir, "config.yml")
17
+ plbert_config = yaml.safe_load(open(config_path))
18
+
19
+ albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
20
+ bert = CustomAlbert(albert_base_configuration)
21
+
22
+ files = os.listdir(log_dir)
23
+ ckpts = []
24
+ for f in os.listdir(log_dir):
25
+ if f.startswith("step_"): ckpts.append(f)
26
+
27
+ iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
28
+ iters = sorted(iters)[-1]
29
+
30
+ checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".t7", map_location='cpu')
31
+ state_dict = checkpoint['net']
32
+ from collections import OrderedDict
33
+ new_state_dict = OrderedDict()
34
+ for k, v in state_dict.items():
35
+ name = k[7:] # remove `module.`
36
+ if name.startswith('encoder.'):
37
+ name = name[8:] # remove `encoder.`
38
+ new_state_dict[name] = v
39
+ del new_state_dict["embeddings.position_ids"]
40
+ bert.load_state_dict(new_state_dict, strict=False)
41
+
42
+ return bert
Utils/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
app.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import IPython.display as ipd
2
+ import gradio as gr
3
+ from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
4
+ from Utils.PLBERT.util import load_plbert
5
+ import phonemizer
6
+ from text_utils import TextCleaner
7
+ from utils import *
8
+ from models import *
9
+ from nltk.tokenize import word_tokenize
10
+ import librosa
11
+ import torchaudio
12
+ import torch.nn.functional as F
13
+ from torch import nn
14
+ from munch import Munch
15
+ import yaml
16
+ import time
17
+ import numpy as np
18
+ import random
19
+ import torch
20
+ import nltk
21
+ nltk.download('punkt_tab')
22
+
23
+ torch.manual_seed(0)
24
+ torch.backends.cudnn.benchmark = False
25
+ torch.backends.cudnn.deterministic = True
26
+
27
+ random.seed(0)
28
+
29
+ np.random.seed(0)
30
+
31
+ # load packages
32
+
33
+ textcleaner = TextCleaner()
34
+
35
+ # set up a transformation from a sound wave (an amplitude at each sampling step) to a mel spectrogram (80 dimensions).
36
+ to_mel = torchaudio.transforms.MelSpectrogram(
37
+ n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
38
+
39
+ mean, std = -4, 4
40
+
41
+ # Creates a binary mask of 1s for values in the tensor and zero for padding to the length of the longest vector.
42
+
43
+
44
+ def length_to_mask(lengths):
45
+ mask = torch.arange(lengths.max()).unsqueeze(
46
+ 0).expand(lengths.shape[0], -1).type_as(lengths)
47
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
48
+ return mask
49
+
50
+ # Converts a waveform to a normalized log-Mel spectrogram tensor.
51
+
52
+
53
+ def preprocess(wave):
54
+ wave_tensor = torch.from_numpy(wave).float()
55
+ mel_tensor = to_mel(wave_tensor)
56
+ mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
57
+ return mel_tensor
58
+
59
+ # Loads, trims, resamples an audio file, and computes its style and predictor encodings.
60
+
61
+
62
+ def compute_style(path):
63
+ wave, sr = librosa.load(path, sr=24000)
64
+ audio, index = librosa.effects.trim(wave, top_db=30)
65
+ if sr != 24000:
66
+ audio = librosa.resample(audio, sr, 24000)
67
+ mel_tensor = preprocess(audio).to(device)
68
+
69
+ with torch.no_grad():
70
+ ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) # gets
71
+ ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
72
+
73
+ return torch.cat([ref_s, ref_p], dim=1)
74
+
75
+
76
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
77
+ if device != 'cuda':
78
+ print("Using cpu as cuda is not available!")
79
+ else:
80
+ print("Using cuda")
81
+
82
+ # load phonemizer (converts text into phonemes)
83
+ global_phonemizer = phonemizer.backend.EspeakBackend(
84
+ language='en-us', preserve_punctuation=True, with_stress=True)
85
+
86
+
87
+ # model_folder_path="Models/LibriTTS-lora-ft/merged" # for inferencing the merged lora
88
+ # config = yaml.safe_load(open(model_folder_path + '/config.yml'))
89
+
90
+ # for inferencing the full fine-tuned model
91
+ model_folder_path = "Models/LibriTTS-fft"
92
+ # Rohan, why is the file here config_ft whereas for lora above it is config.yml . Are we loading what we think we are?
93
+ config = yaml.safe_load(open(model_folder_path + '/config_ft.yml'))
94
+
95
+ # load pretrained ASR model
96
+ ASR_config = config.get('ASR_config', False)
97
+ ASR_path = config.get('ASR_path', False)
98
+ text_aligner = load_ASR_models(ASR_path, ASR_config)
99
+
100
+ # load pretrained F0 model
101
+ F0_path = config.get('F0_path', False)
102
+ pitch_extractor = load_F0_models(F0_path)
103
+
104
+ # load BERT model
105
+ BERT_path = config.get('PLBERT_dir', False)
106
+ plbert = load_plbert(BERT_path)
107
+
108
+ model_params = recursive_munch(config['model_params'])
109
+ model = build_model(model_params, text_aligner, pitch_extractor, plbert)
110
+ _ = [model[key].eval() for key in model]
111
+ _ = [model[key].to(device) for key in model]
112
+
113
+ files = [f for f in os.listdir(model_folder_path) if f.endswith('.pth')]
114
+ sorted_files = sorted(files, key=lambda x: int(x.split('_')[-1].split('.')[0]))
115
+
116
+ print(sorted_files)
117
+
118
+ # I'm grabbing the last fine instead
119
+ params_whole = torch.load(model_folder_path + '/' +
120
+ sorted_files[-1], map_location='cpu')
121
+
122
+ if 'net' in params_whole.keys():
123
+ print('yes')
124
+ params = params_whole['net']
125
+ else:
126
+ params = params_whole
127
+ print('no')
128
+
129
+
130
+ for key in model:
131
+ if key in params:
132
+ print('%s loaded' % key)
133
+ try:
134
+ model[key].load_state_dict(params[key])
135
+ except:
136
+ from collections import OrderedDict
137
+ state_dict = params[key]
138
+ new_state_dict = OrderedDict()
139
+ for k, v in state_dict.items():
140
+ name = k[7:] # remove `module.`
141
+ new_state_dict[name] = v
142
+ # load params
143
+ model[key].load_state_dict(new_state_dict, strict=False)
144
+ # except:
145
+ # _load(params[key], model[key])
146
+
147
+
148
+ # Loading the diffusion sampler
149
+ sampler = DiffusionSampler(
150
+ model.diffusion.diffusion,
151
+ sampler=ADPM2Sampler(),
152
+ sigma_schedule=KarrasSchedule(
153
+ sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
154
+ clamp=False
155
+ )
156
+
157
+
158
+ def inference(text, ref_s, alpha=0.2, beta=0.2, diffusion_steps=10, embedding_scale=1):
159
+ """
160
+ Generate speech from text using a diffusion-based approach with reference style blending.
161
+
162
+ Parameters:
163
+ - text: The input text to convert to speech.
164
+ - ref_s: The reference style and predictor encoder features from an audio snippet.
165
+ - alpha: Blending factor for the reference style (lower alpha means more like the reference).
166
+ - beta: Blending factor for the predictor features (lower beta means more like the reference).
167
+ - diffusion_steps: Number of steps in the diffusion process (more steps improve quality).
168
+ - embedding_scale: Scaling factor for the BERT embeddings.
169
+ """
170
+
171
+ # Clean up and tokenize the input text
172
+ text = text.strip()
173
+ ps = global_phonemizer.phonemize([text])
174
+ ps = word_tokenize(ps[0])
175
+ ps = ' '.join(ps)
176
+ tokens = textcleaner(ps)
177
+ tokens.insert(0, 0)
178
+ tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
179
+
180
+ with torch.no_grad():
181
+ # Get the length of the input tokens
182
+ input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
183
+ # Create a mask for the input text to handle variable lengths
184
+ text_mask = length_to_mask(input_lengths).to(device)
185
+
186
+ # Encode the text using the text encoder
187
+ t_en = model.text_encoder(tokens, input_lengths, text_mask)
188
+ # Use BERT to get the prosodic text encoding (to be used for style prediction).
189
+ bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
190
+ # Further reduce the dimensions of the BERT embeddings to be suitable for the predictor
191
+ d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
192
+
193
+ # Generate an output style + predictor vector
194
+ s_pred = sampler(
195
+ noise=torch.randn((1, 256)).unsqueeze(1).to(device),
196
+ embedding=bert_dur, # BERT output embeddings
197
+ embedding_scale=embedding_scale,
198
+ features=ref_s, # Style and predictor features from reference audio
199
+ num_steps=diffusion_steps
200
+ ).squeeze(1)
201
+
202
+ # Split the generated features into style and predictor components
203
+ s = s_pred[:, 128:]
204
+ ref = s_pred[:, :128]
205
+
206
+ # Blend the generated style features with the reference style
207
+ ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
208
+ # Blend the generated predictor features with the reference predictor
209
+ s = beta * s + (1 - beta) * ref_s[:, 128:]
210
+
211
+ # Use the predictor to encode the text with the generated features
212
+ d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
213
+
214
+ # Pass through the LSTM to get duration predictions
215
+ x, _ = model.predictor.lstm(d)
216
+ duration = model.predictor.duration_proj(x)
217
+
218
+ # Process the duration predictions
219
+ duration = torch.sigmoid(duration).sum(axis=-1)
220
+ pred_dur = torch.round(duration.squeeze()).clamp(min=1)
221
+
222
+ # Create a target alignment for the predicted durations
223
+ pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
224
+ c_frame = 0
225
+ for i in range(pred_aln_trg.size(0)):
226
+ pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
227
+ c_frame += int(pred_dur[i].data)
228
+
229
+ # Encode the prosody using the target alignment
230
+ en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
231
+ if model_params.decoder.type == "hifigan":
232
+ # Adjust for HiFi-GAN decoder input format
233
+ asr_new = torch.zeros_like(en)
234
+ asr_new[:, :, 0] = en[:, :, 0]
235
+ asr_new[:, :, 1:] = en[:, :, 0:-1]
236
+ en = asr_new
237
+
238
+ # Predict F0 and N features (fundamental frequency and noise)
239
+ F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
240
+
241
+ # Create the alignment for the text encoder output
242
+ asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
243
+ if model_params.decoder.type == "hifigan":
244
+ # Adjust for HiFi-GAN decoder input format
245
+ asr_new = torch.zeros_like(asr)
246
+ asr_new[:, :, 0] = asr[:, :, 0]
247
+ asr_new[:, :, 1:] = asr[:, :, 0:-1]
248
+ asr = asr_new
249
+
250
+ # Decode the final audio output using the decoder
251
+ out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0))
252
+
253
+ # Return the generated audio, excluding a small pulse at the end
254
+ # weird pulse at the end of the model, need to be fixed later
255
+ return out.squeeze().cpu().numpy()[..., :-50]
256
+
257
+
258
+ import numpy as np
259
+ import gradio as gr
260
+
261
+ def tts_model(text):
262
+ # Assuming a reference path is used for style (you can adjust this path as needed)
263
+ ref_s = compute_style("Trelis_Data/wavs/med5_0.wav")
264
+
265
+ # Run inference to generate the output wav
266
+ wav = inference(text, ref_s, alpha=0.3, beta=0.3,
267
+ diffusion_steps=10, embedding_scale=1)
268
+
269
+ # Convert 1D wav array to 2D to match Gradio's expectations (mono audio)
270
+ wav = np.expand_dims(wav, axis=1)
271
+
272
+ # Return the audio as a tuple with sample rate
273
+ return 24000, wav # Assuming a 24000 Hz sample rate for the output audio
274
+
275
+
276
+ # Create a Gradio interface
277
+ interface = gr.Interface(
278
+ fn=tts_model,
279
+ inputs=gr.Textbox(label="Input Text"), # Input text for speech generation
280
+ outputs=gr.Audio(label="Generated Audio", type="numpy"), # Generated TTS audio
281
+ live=False
282
+ )
283
+
284
+ # Launch the Gradio interface
285
+ interface.launch(share=True)
286
+
287
+
288
+
losses.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+ import torchaudio
5
+ from transformers import AutoModel
6
+
7
+ class SpectralConvergengeLoss(torch.nn.Module):
8
+ """Spectral convergence loss module."""
9
+
10
+ def __init__(self):
11
+ """Initilize spectral convergence loss module."""
12
+ super(SpectralConvergengeLoss, self).__init__()
13
+
14
+ def forward(self, x_mag, y_mag):
15
+ """Calculate forward propagation.
16
+ Args:
17
+ x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
18
+ y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
19
+ Returns:
20
+ Tensor: Spectral convergence loss value.
21
+ """
22
+ return torch.norm(y_mag - x_mag, p=1) / torch.norm(y_mag, p=1)
23
+
24
+ class STFTLoss(torch.nn.Module):
25
+ """STFT loss module."""
26
+
27
+ def __init__(self, fft_size=1024, shift_size=120, win_length=600, window=torch.hann_window):
28
+ """Initialize STFT loss module."""
29
+ super(STFTLoss, self).__init__()
30
+ self.fft_size = fft_size
31
+ self.shift_size = shift_size
32
+ self.win_length = win_length
33
+ self.to_mel = torchaudio.transforms.MelSpectrogram(sample_rate=24000, n_fft=fft_size, win_length=win_length, hop_length=shift_size, window_fn=window)
34
+
35
+ self.spectral_convergenge_loss = SpectralConvergengeLoss()
36
+
37
+ def forward(self, x, y):
38
+ """Calculate forward propagation.
39
+ Args:
40
+ x (Tensor): Predicted signal (B, T).
41
+ y (Tensor): Groundtruth signal (B, T).
42
+ Returns:
43
+ Tensor: Spectral convergence loss value.
44
+ Tensor: Log STFT magnitude loss value.
45
+ """
46
+ x_mag = self.to_mel(x)
47
+ mean, std = -4, 4
48
+ x_mag = (torch.log(1e-5 + x_mag) - mean) / std
49
+
50
+ y_mag = self.to_mel(y)
51
+ mean, std = -4, 4
52
+ y_mag = (torch.log(1e-5 + y_mag) - mean) / std
53
+
54
+ sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
55
+ return sc_loss
56
+
57
+
58
+ class MultiResolutionSTFTLoss(torch.nn.Module):
59
+ """Multi resolution STFT loss module."""
60
+
61
+ def __init__(self,
62
+ fft_sizes=[1024, 2048, 512],
63
+ hop_sizes=[120, 240, 50],
64
+ win_lengths=[600, 1200, 240],
65
+ window=torch.hann_window):
66
+ """Initialize Multi resolution STFT loss module.
67
+ Args:
68
+ fft_sizes (list): List of FFT sizes.
69
+ hop_sizes (list): List of hop sizes.
70
+ win_lengths (list): List of window lengths.
71
+ window (str): Window function type.
72
+ """
73
+ super(MultiResolutionSTFTLoss, self).__init__()
74
+ assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
75
+ self.stft_losses = torch.nn.ModuleList()
76
+ for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
77
+ self.stft_losses += [STFTLoss(fs, ss, wl, window)]
78
+
79
+ def forward(self, x, y):
80
+ """Calculate forward propagation.
81
+ Args:
82
+ x (Tensor): Predicted signal (B, T).
83
+ y (Tensor): Groundtruth signal (B, T).
84
+ Returns:
85
+ Tensor: Multi resolution spectral convergence loss value.
86
+ Tensor: Multi resolution log STFT magnitude loss value.
87
+ """
88
+ sc_loss = 0.0
89
+ for f in self.stft_losses:
90
+ sc_l = f(x, y)
91
+ sc_loss += sc_l
92
+ sc_loss /= len(self.stft_losses)
93
+
94
+ return sc_loss
95
+
96
+
97
+ def feature_loss(fmap_r, fmap_g):
98
+ loss = 0
99
+ for dr, dg in zip(fmap_r, fmap_g):
100
+ for rl, gl in zip(dr, dg):
101
+ loss += torch.mean(torch.abs(rl - gl))
102
+
103
+ return loss*2
104
+
105
+
106
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
107
+ loss = 0
108
+ r_losses = []
109
+ g_losses = []
110
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
111
+ r_loss = torch.mean((1-dr)**2)
112
+ g_loss = torch.mean(dg**2)
113
+ loss += (r_loss + g_loss)
114
+ r_losses.append(r_loss.item())
115
+ g_losses.append(g_loss.item())
116
+
117
+ return loss, r_losses, g_losses
118
+
119
+
120
+ def generator_loss(disc_outputs):
121
+ loss = 0
122
+ gen_losses = []
123
+ for dg in disc_outputs:
124
+ l = torch.mean((1-dg)**2)
125
+ gen_losses.append(l)
126
+ loss += l
127
+
128
+ return loss, gen_losses
129
+
130
+ """ https://dl.acm.org/doi/abs/10.1145/3573834.3574506 """
131
+ def discriminator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
132
+ loss = 0
133
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
134
+ tau = 0.04
135
+ m_DG = torch.median((dr-dg))
136
+ L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG])
137
+ loss += tau - F.relu(tau - L_rel)
138
+ return loss
139
+
140
+ def generator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
141
+ loss = 0
142
+ for dg, dr in zip(disc_real_outputs, disc_generated_outputs):
143
+ tau = 0.04
144
+ m_DG = torch.median((dr-dg))
145
+ L_rel = torch.mean((((dr - dg) - m_DG)**2)[dr < dg + m_DG])
146
+ loss += tau - F.relu(tau - L_rel)
147
+ return loss
148
+
149
+ class GeneratorLoss(torch.nn.Module):
150
+
151
+ def __init__(self, mpd, msd):
152
+ super(GeneratorLoss, self).__init__()
153
+ self.mpd = mpd
154
+ self.msd = msd
155
+
156
+ def forward(self, y, y_hat):
157
+ y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = self.mpd(y, y_hat)
158
+ y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = self.msd(y, y_hat)
159
+ loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
160
+ loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
161
+ loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
162
+ loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
163
+
164
+ loss_rel = generator_TPRLS_loss(y_df_hat_r, y_df_hat_g) + generator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
165
+
166
+ loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_rel
167
+
168
+ return loss_gen_all.mean()
169
+
170
+ class DiscriminatorLoss(torch.nn.Module):
171
+
172
+ def __init__(self, mpd, msd):
173
+ super(DiscriminatorLoss, self).__init__()
174
+ self.mpd = mpd
175
+ self.msd = msd
176
+
177
+ def forward(self, y, y_hat):
178
+ # MPD
179
+ y_df_hat_r, y_df_hat_g, _, _ = self.mpd(y, y_hat)
180
+ loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
181
+ # MSD
182
+ y_ds_hat_r, y_ds_hat_g, _, _ = self.msd(y, y_hat)
183
+ loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
184
+
185
+ loss_rel = discriminator_TPRLS_loss(y_df_hat_r, y_df_hat_g) + discriminator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
186
+
187
+
188
+ d_loss = loss_disc_s + loss_disc_f + loss_rel
189
+
190
+ return d_loss.mean()
191
+
192
+
193
+ class WavLMLoss(torch.nn.Module):
194
+
195
+ def __init__(self, model, wd, model_sr, slm_sr=16000):
196
+ super(WavLMLoss, self).__init__()
197
+ self.wavlm = AutoModel.from_pretrained(model)
198
+ self.wd = wd
199
+ self.resample = torchaudio.transforms.Resample(model_sr, slm_sr)
200
+
201
+ def forward(self, wav, y_rec):
202
+ with torch.no_grad():
203
+ wav_16 = self.resample(wav)
204
+ wav_embeddings = self.wavlm(input_values=wav_16, output_hidden_states=True).hidden_states
205
+ y_rec_16 = self.resample(y_rec)
206
+ y_rec_embeddings = self.wavlm(input_values=y_rec_16.squeeze(), output_hidden_states=True).hidden_states
207
+
208
+ floss = 0
209
+ for er, eg in zip(wav_embeddings, y_rec_embeddings):
210
+ floss += torch.mean(torch.abs(er - eg))
211
+
212
+ return floss.mean()
213
+
214
+ def generator(self, y_rec):
215
+ y_rec_16 = self.resample(y_rec)
216
+ y_rec_embeddings = self.wavlm(input_values=y_rec_16, output_hidden_states=True).hidden_states
217
+ y_rec_embeddings = torch.stack(y_rec_embeddings, dim=1).transpose(-1, -2).flatten(start_dim=1, end_dim=2)
218
+ y_df_hat_g = self.wd(y_rec_embeddings)
219
+ loss_gen = torch.mean((1-y_df_hat_g)**2)
220
+
221
+ return loss_gen
222
+
223
+ def discriminator(self, wav, y_rec):
224
+ with torch.no_grad():
225
+ wav_16 = self.resample(wav)
226
+ wav_embeddings = self.wavlm(input_values=wav_16, output_hidden_states=True).hidden_states
227
+ y_rec_16 = self.resample(y_rec)
228
+ y_rec_embeddings = self.wavlm(input_values=y_rec_16, output_hidden_states=True).hidden_states
229
+
230
+ y_embeddings = torch.stack(wav_embeddings, dim=1).transpose(-1, -2).flatten(start_dim=1, end_dim=2)
231
+ y_rec_embeddings = torch.stack(y_rec_embeddings, dim=1).transpose(-1, -2).flatten(start_dim=1, end_dim=2)
232
+
233
+ y_d_rs = self.wd(y_embeddings)
234
+ y_d_gs = self.wd(y_rec_embeddings)
235
+
236
+ y_df_hat_r, y_df_hat_g = y_d_rs, y_d_gs
237
+
238
+ r_loss = torch.mean((1-y_df_hat_r)**2)
239
+ g_loss = torch.mean((y_df_hat_g)**2)
240
+
241
+ loss_disc_f = r_loss + g_loss
242
+
243
+ return loss_disc_f.mean()
244
+
245
+ def discriminator_forward(self, wav):
246
+ with torch.no_grad():
247
+ wav_16 = self.resample(wav)
248
+ wav_embeddings = self.wavlm(input_values=wav_16, output_hidden_states=True).hidden_states
249
+ y_embeddings = torch.stack(wav_embeddings, dim=1).transpose(-1, -2).flatten(start_dim=1, end_dim=2)
250
+
251
+ y_d_rs = self.wd(y_embeddings)
252
+
253
+ return y_d_rs
meldataset.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #coding: utf-8
2
+ import os
3
+ import os.path as osp
4
+ import time
5
+ import random
6
+ import numpy as np
7
+ import random
8
+ import soundfile as sf
9
+ import librosa
10
+
11
+ import torch
12
+ from torch import nn
13
+ import torch.nn.functional as F
14
+ import torchaudio
15
+ from torch.utils.data import DataLoader
16
+
17
+ import logging
18
+ logger = logging.getLogger(__name__)
19
+ logger.setLevel(logging.DEBUG)
20
+
21
+ import pandas as pd
22
+
23
+ _pad = "$"
24
+ _punctuation = ';:,.!?¡¿—…"«»“” '
25
+ _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
26
+ _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
27
+
28
+ # Export all symbols:
29
+ symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
30
+
31
+ dicts = {}
32
+ for i in range(len((symbols))):
33
+ dicts[symbols[i]] = i
34
+
35
+ class TextCleaner:
36
+ def __init__(self, dummy=None):
37
+ self.word_index_dictionary = dicts
38
+ def __call__(self, text):
39
+ indexes = []
40
+ for char in text:
41
+ try:
42
+ indexes.append(self.word_index_dictionary[char])
43
+ except KeyError:
44
+ print(text)
45
+ return indexes
46
+
47
+ np.random.seed(1)
48
+ random.seed(1)
49
+ SPECT_PARAMS = {
50
+ "n_fft": 2048,
51
+ "win_length": 1200,
52
+ "hop_length": 300
53
+ }
54
+ MEL_PARAMS = {
55
+ "n_mels": 80,
56
+ }
57
+
58
+ to_mel = torchaudio.transforms.MelSpectrogram(
59
+ n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
60
+ mean, std = -4, 4
61
+
62
+ def preprocess(wave):
63
+ wave_tensor = torch.from_numpy(wave).float()
64
+ mel_tensor = to_mel(wave_tensor)
65
+ mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
66
+ return mel_tensor
67
+
68
+ class FilePathDataset(torch.utils.data.Dataset):
69
+ def __init__(self,
70
+ data_list,
71
+ root_path,
72
+ sr=24000,
73
+ data_augmentation=False,
74
+ validation=False,
75
+ OOD_data="Data/OOD_texts.txt",
76
+ min_length=50,
77
+ ):
78
+
79
+ spect_params = SPECT_PARAMS
80
+ mel_params = MEL_PARAMS
81
+
82
+ _data_list = [l.strip().split('|') for l in data_list]
83
+ self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list]
84
+ self.text_cleaner = TextCleaner()
85
+ self.sr = sr
86
+
87
+ self.df = pd.DataFrame(self.data_list)
88
+
89
+ self.to_melspec = torchaudio.transforms.MelSpectrogram(**MEL_PARAMS)
90
+
91
+ self.mean, self.std = -4, 4
92
+ self.data_augmentation = data_augmentation and (not validation)
93
+ self.max_mel_length = 192
94
+
95
+ self.min_length = min_length
96
+ with open(OOD_data, 'r', encoding='utf-8') as f:
97
+ tl = f.readlines()
98
+ idx = 1 if '.wav' in tl[0].split('|')[0] else 0
99
+ self.ptexts = [t.split('|')[idx] for t in tl]
100
+
101
+ self.root_path = root_path
102
+
103
+ def __len__(self):
104
+ return len(self.data_list)
105
+
106
+ def __getitem__(self, idx):
107
+ data = self.data_list[idx]
108
+ path = data[0]
109
+
110
+ wave, text_tensor, speaker_id = self._load_tensor(data)
111
+
112
+ mel_tensor = preprocess(wave).squeeze()
113
+
114
+ acoustic_feature = mel_tensor.squeeze()
115
+ length_feature = acoustic_feature.size(1)
116
+ acoustic_feature = acoustic_feature[:, :(length_feature - length_feature % 2)]
117
+
118
+ # get reference sample
119
+ ref_data = (self.df[self.df[2] == str(speaker_id)]).sample(n=1).iloc[0].tolist()
120
+ ref_mel_tensor, ref_label = self._load_data(ref_data[:3])
121
+
122
+ # get OOD text
123
+
124
+ ps = ""
125
+
126
+ while len(ps) < self.min_length:
127
+ rand_idx = np.random.randint(0, len(self.ptexts) - 1)
128
+ ps = self.ptexts[rand_idx]
129
+
130
+ text = self.text_cleaner(ps)
131
+ text.insert(0, 0)
132
+ text.append(0)
133
+
134
+ ref_text = torch.LongTensor(text)
135
+
136
+ return speaker_id, acoustic_feature, text_tensor, ref_text, ref_mel_tensor, ref_label, path, wave
137
+
138
+ def _load_tensor(self, data):
139
+ wave_path, text, speaker_id = data
140
+ speaker_id = int(speaker_id)
141
+ wave, sr = sf.read(osp.join(self.root_path, wave_path))
142
+ if wave.shape[-1] == 2:
143
+ wave = wave[:, 0].squeeze()
144
+ if sr != 24000:
145
+ wave = librosa.resample(wave, orig_sr=sr, target_sr=24000)
146
+ print(wave_path, sr)
147
+
148
+ wave = np.concatenate([np.zeros([5000]), wave, np.zeros([5000])], axis=0)
149
+
150
+ text = self.text_cleaner(text)
151
+
152
+ text.insert(0, 0)
153
+ text.append(0)
154
+
155
+ text = torch.LongTensor(text)
156
+
157
+ return wave, text, speaker_id
158
+
159
+ def _load_data(self, data):
160
+ wave, text_tensor, speaker_id = self._load_tensor(data)
161
+ mel_tensor = preprocess(wave).squeeze()
162
+
163
+ mel_length = mel_tensor.size(1)
164
+ if mel_length > self.max_mel_length:
165
+ random_start = np.random.randint(0, mel_length - self.max_mel_length)
166
+ mel_tensor = mel_tensor[:, random_start:random_start + self.max_mel_length]
167
+
168
+ return mel_tensor, speaker_id
169
+
170
+
171
+ class Collater(object):
172
+ """
173
+ Args:
174
+ adaptive_batch_size (bool): if true, decrease batch size when long data comes.
175
+ """
176
+
177
+ def __init__(self, return_wave=False):
178
+ self.text_pad_index = 0
179
+ self.min_mel_length = 192
180
+ self.max_mel_length = 192
181
+ self.return_wave = return_wave
182
+
183
+
184
+ def __call__(self, batch):
185
+ # batch[0] = wave, mel, text, f0, speakerid
186
+ batch_size = len(batch)
187
+
188
+ # sort by mel length
189
+ lengths = [b[1].shape[1] for b in batch]
190
+ batch_indexes = np.argsort(lengths)[::-1]
191
+ batch = [batch[bid] for bid in batch_indexes]
192
+
193
+ nmels = batch[0][1].size(0)
194
+ max_mel_length = max([b[1].shape[1] for b in batch])
195
+ max_text_length = max([b[2].shape[0] for b in batch])
196
+ max_rtext_length = max([b[3].shape[0] for b in batch])
197
+
198
+ labels = torch.zeros((batch_size)).long()
199
+ mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
200
+ texts = torch.zeros((batch_size, max_text_length)).long()
201
+ ref_texts = torch.zeros((batch_size, max_rtext_length)).long()
202
+
203
+ input_lengths = torch.zeros(batch_size).long()
204
+ ref_lengths = torch.zeros(batch_size).long()
205
+ output_lengths = torch.zeros(batch_size).long()
206
+ ref_mels = torch.zeros((batch_size, nmels, self.max_mel_length)).float()
207
+ ref_labels = torch.zeros((batch_size)).long()
208
+ paths = ['' for _ in range(batch_size)]
209
+ waves = [None for _ in range(batch_size)]
210
+
211
+ for bid, (label, mel, text, ref_text, ref_mel, ref_label, path, wave) in enumerate(batch):
212
+ mel_size = mel.size(1)
213
+ text_size = text.size(0)
214
+ rtext_size = ref_text.size(0)
215
+ labels[bid] = label
216
+ mels[bid, :, :mel_size] = mel
217
+ texts[bid, :text_size] = text
218
+ ref_texts[bid, :rtext_size] = ref_text
219
+ input_lengths[bid] = text_size
220
+ ref_lengths[bid] = rtext_size
221
+ output_lengths[bid] = mel_size
222
+ paths[bid] = path
223
+ ref_mel_size = ref_mel.size(1)
224
+ ref_mels[bid, :, :ref_mel_size] = ref_mel
225
+
226
+ ref_labels[bid] = ref_label
227
+ waves[bid] = wave
228
+
229
+ return waves, texts, input_lengths, ref_texts, ref_lengths, mels, output_lengths, ref_mels
230
+
231
+
232
+
233
+ def build_dataloader(path_list,
234
+ root_path,
235
+ validation=False,
236
+ OOD_data="Data/OOD_texts.txt",
237
+ min_length=50,
238
+ batch_size=4,
239
+ num_workers=1,
240
+ device='cpu',
241
+ collate_config={},
242
+ dataset_config={}):
243
+
244
+ dataset = FilePathDataset(path_list, root_path, OOD_data=OOD_data, min_length=min_length, validation=validation, **dataset_config)
245
+ collate_fn = Collater(**collate_config)
246
+ data_loader = DataLoader(dataset,
247
+ batch_size=batch_size,
248
+ shuffle=(not validation),
249
+ num_workers=num_workers,
250
+ drop_last=(not validation),
251
+ collate_fn=collate_fn,
252
+ pin_memory=(device != 'cpu'))
253
+
254
+ return data_loader
255
+
models.py ADDED
@@ -0,0 +1,713 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #coding:utf-8
2
+
3
+ import os
4
+ import os.path as osp
5
+
6
+ import copy
7
+ import math
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
+
15
+ from Utils.ASR.models import ASRCNN
16
+ from Utils.JDC.model import JDCNet
17
+
18
+ from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution
19
+ from Modules.diffusion.modules import Transformer1d, StyleTransformer1d
20
+ from Modules.diffusion.diffusion import AudioDiffusionConditional
21
+
22
+ from Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator, WavLMDiscriminator
23
+
24
+ from munch import Munch
25
+ import yaml
26
+
27
+ class LearnedDownSample(nn.Module):
28
+ def __init__(self, layer_type, dim_in):
29
+ super().__init__()
30
+ self.layer_type = layer_type
31
+
32
+ if self.layer_type == 'none':
33
+ self.conv = nn.Identity()
34
+ elif self.layer_type == 'timepreserve':
35
+ self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
36
+ elif self.layer_type == 'half':
37
+ self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
38
+ else:
39
+ raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
40
+
41
+ def forward(self, x):
42
+ return self.conv(x)
43
+
44
+ class LearnedUpSample(nn.Module):
45
+ def __init__(self, layer_type, dim_in):
46
+ super().__init__()
47
+ self.layer_type = layer_type
48
+
49
+ if self.layer_type == 'none':
50
+ self.conv = nn.Identity()
51
+ elif self.layer_type == 'timepreserve':
52
+ self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
53
+ elif self.layer_type == 'half':
54
+ self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
55
+ else:
56
+ raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
57
+
58
+
59
+ def forward(self, x):
60
+ return self.conv(x)
61
+
62
+ class DownSample(nn.Module):
63
+ def __init__(self, layer_type):
64
+ super().__init__()
65
+ self.layer_type = layer_type
66
+
67
+ def forward(self, x):
68
+ if self.layer_type == 'none':
69
+ return x
70
+ elif self.layer_type == 'timepreserve':
71
+ return F.avg_pool2d(x, (2, 1))
72
+ elif self.layer_type == 'half':
73
+ if x.shape[-1] % 2 != 0:
74
+ x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
75
+ return F.avg_pool2d(x, 2)
76
+ else:
77
+ raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
78
+
79
+
80
+ class UpSample(nn.Module):
81
+ def __init__(self, layer_type):
82
+ super().__init__()
83
+ self.layer_type = layer_type
84
+
85
+ def forward(self, x):
86
+ if self.layer_type == 'none':
87
+ return x
88
+ elif self.layer_type == 'timepreserve':
89
+ return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
90
+ elif self.layer_type == 'half':
91
+ return F.interpolate(x, scale_factor=2, mode='nearest')
92
+ else:
93
+ raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
94
+
95
+
96
+ class ResBlk(nn.Module):
97
+ def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
98
+ normalize=False, downsample='none'):
99
+ super().__init__()
100
+ self.actv = actv
101
+ self.normalize = normalize
102
+ self.downsample = DownSample(downsample)
103
+ self.downsample_res = LearnedDownSample(downsample, dim_in)
104
+ self.learned_sc = dim_in != dim_out
105
+ self._build_weights(dim_in, dim_out)
106
+
107
+ def _build_weights(self, dim_in, dim_out):
108
+ self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
109
+ self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
110
+ if self.normalize:
111
+ self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
112
+ self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
113
+ if self.learned_sc:
114
+ self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
115
+
116
+ def _shortcut(self, x):
117
+ if self.learned_sc:
118
+ x = self.conv1x1(x)
119
+ if self.downsample:
120
+ x = self.downsample(x)
121
+ return x
122
+
123
+ def _residual(self, x):
124
+ if self.normalize:
125
+ x = self.norm1(x)
126
+ x = self.actv(x)
127
+ x = self.conv1(x)
128
+ x = self.downsample_res(x)
129
+ if self.normalize:
130
+ x = self.norm2(x)
131
+ x = self.actv(x)
132
+ x = self.conv2(x)
133
+ return x
134
+
135
+ def forward(self, x):
136
+ x = self._shortcut(x) + self._residual(x)
137
+ return x / math.sqrt(2) # unit variance
138
+
139
+ class StyleEncoder(nn.Module):
140
+ def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384):
141
+ super().__init__()
142
+ blocks = []
143
+ blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
144
+
145
+ repeat_num = 4
146
+ for _ in range(repeat_num):
147
+ dim_out = min(dim_in*2, max_conv_dim)
148
+ blocks += [ResBlk(dim_in, dim_out, downsample='half')]
149
+ dim_in = dim_out
150
+
151
+ blocks += [nn.LeakyReLU(0.2)]
152
+ blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
153
+ blocks += [nn.AdaptiveAvgPool2d(1)]
154
+ blocks += [nn.LeakyReLU(0.2)]
155
+ self.shared = nn.Sequential(*blocks)
156
+
157
+ self.unshared = nn.Linear(dim_out, style_dim)
158
+
159
+ def forward(self, x):
160
+ h = self.shared(x)
161
+ h = h.view(h.size(0), -1)
162
+ s = self.unshared(h)
163
+
164
+ return s
165
+
166
+ class LinearNorm(torch.nn.Module):
167
+ def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
168
+ super(LinearNorm, self).__init__()
169
+ self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
170
+
171
+ torch.nn.init.xavier_uniform_(
172
+ self.linear_layer.weight,
173
+ gain=torch.nn.init.calculate_gain(w_init_gain))
174
+
175
+ def forward(self, x):
176
+ return self.linear_layer(x)
177
+
178
+ class Discriminator2d(nn.Module):
179
+ def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4):
180
+ super().__init__()
181
+ blocks = []
182
+ blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
183
+
184
+ for lid in range(repeat_num):
185
+ dim_out = min(dim_in*2, max_conv_dim)
186
+ blocks += [ResBlk(dim_in, dim_out, downsample='half')]
187
+ dim_in = dim_out
188
+
189
+ blocks += [nn.LeakyReLU(0.2)]
190
+ blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
191
+ blocks += [nn.LeakyReLU(0.2)]
192
+ blocks += [nn.AdaptiveAvgPool2d(1)]
193
+ blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))]
194
+ self.main = nn.Sequential(*blocks)
195
+
196
+ def get_feature(self, x):
197
+ features = []
198
+ for l in self.main:
199
+ x = l(x)
200
+ features.append(x)
201
+ out = features[-1]
202
+ out = out.view(out.size(0), -1) # (batch, num_domains)
203
+ return out, features
204
+
205
+ def forward(self, x):
206
+ out, features = self.get_feature(x)
207
+ out = out.squeeze() # (batch)
208
+ return out, features
209
+
210
+ class ResBlk1d(nn.Module):
211
+ def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
212
+ normalize=False, downsample='none', dropout_p=0.2):
213
+ super().__init__()
214
+ self.actv = actv
215
+ self.normalize = normalize
216
+ self.downsample_type = downsample
217
+ self.learned_sc = dim_in != dim_out
218
+ self._build_weights(dim_in, dim_out)
219
+ self.dropout_p = dropout_p
220
+
221
+ if self.downsample_type == 'none':
222
+ self.pool = nn.Identity()
223
+ else:
224
+ self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))
225
+
226
+ def _build_weights(self, dim_in, dim_out):
227
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
228
+ self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
229
+ if self.normalize:
230
+ self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
231
+ self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
232
+ if self.learned_sc:
233
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
234
+
235
+ def downsample(self, x):
236
+ if self.downsample_type == 'none':
237
+ return x
238
+ else:
239
+ if x.shape[-1] % 2 != 0:
240
+ x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
241
+ return F.avg_pool1d(x, 2)
242
+
243
+ def _shortcut(self, x):
244
+ if self.learned_sc:
245
+ x = self.conv1x1(x)
246
+ x = self.downsample(x)
247
+ return x
248
+
249
+ def _residual(self, x):
250
+ if self.normalize:
251
+ x = self.norm1(x)
252
+ x = self.actv(x)
253
+ x = F.dropout(x, p=self.dropout_p, training=self.training)
254
+
255
+ x = self.conv1(x)
256
+ x = self.pool(x)
257
+ if self.normalize:
258
+ x = self.norm2(x)
259
+
260
+ x = self.actv(x)
261
+ x = F.dropout(x, p=self.dropout_p, training=self.training)
262
+
263
+ x = self.conv2(x)
264
+ return x
265
+
266
+ def forward(self, x):
267
+ x = self._shortcut(x) + self._residual(x)
268
+ return x / math.sqrt(2) # unit variance
269
+
270
+ class LayerNorm(nn.Module):
271
+ def __init__(self, channels, eps=1e-5):
272
+ super().__init__()
273
+ self.channels = channels
274
+ self.eps = eps
275
+
276
+ self.gamma = nn.Parameter(torch.ones(channels))
277
+ self.beta = nn.Parameter(torch.zeros(channels))
278
+
279
+ def forward(self, x):
280
+ x = x.transpose(1, -1)
281
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
282
+ return x.transpose(1, -1)
283
+
284
+ class TextEncoder(nn.Module):
285
+ def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
286
+ super().__init__()
287
+ self.embedding = nn.Embedding(n_symbols, channels)
288
+
289
+ padding = (kernel_size - 1) // 2
290
+ self.cnn = nn.ModuleList()
291
+ for _ in range(depth):
292
+ self.cnn.append(nn.Sequential(
293
+ weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
294
+ LayerNorm(channels),
295
+ actv,
296
+ nn.Dropout(0.2),
297
+ ))
298
+ # self.cnn = nn.Sequential(*self.cnn)
299
+
300
+ self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
301
+
302
+ def forward(self, x, input_lengths, m):
303
+ x = self.embedding(x) # [B, T, emb]
304
+ x = x.transpose(1, 2) # [B, emb, T]
305
+ m = m.to(input_lengths.device).unsqueeze(1)
306
+ x.masked_fill_(m, 0.0)
307
+
308
+ for c in self.cnn:
309
+ x = c(x)
310
+ x.masked_fill_(m, 0.0)
311
+
312
+ x = x.transpose(1, 2) # [B, T, chn]
313
+
314
+ input_lengths = input_lengths.cpu().numpy()
315
+ x = nn.utils.rnn.pack_padded_sequence(
316
+ x, input_lengths, batch_first=True, enforce_sorted=False)
317
+
318
+ self.lstm.flatten_parameters()
319
+ x, _ = self.lstm(x)
320
+ x, _ = nn.utils.rnn.pad_packed_sequence(
321
+ x, batch_first=True)
322
+
323
+ x = x.transpose(-1, -2)
324
+ x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
325
+
326
+ x_pad[:, :, :x.shape[-1]] = x
327
+ x = x_pad.to(x.device)
328
+
329
+ x.masked_fill_(m, 0.0)
330
+
331
+ return x
332
+
333
+ def inference(self, x):
334
+ x = self.embedding(x)
335
+ x = x.transpose(1, 2)
336
+ x = self.cnn(x)
337
+ x = x.transpose(1, 2)
338
+ self.lstm.flatten_parameters()
339
+ x, _ = self.lstm(x)
340
+ return x
341
+
342
+ def length_to_mask(self, lengths):
343
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
344
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
345
+ return mask
346
+
347
+
348
+
349
+ class AdaIN1d(nn.Module):
350
+ def __init__(self, style_dim, num_features):
351
+ super().__init__()
352
+ self.norm = nn.InstanceNorm1d(num_features, affine=False)
353
+ self.fc = nn.Linear(style_dim, num_features*2)
354
+
355
+ def forward(self, x, s):
356
+ h = self.fc(s)
357
+ h = h.view(h.size(0), h.size(1), 1)
358
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
359
+ return (1 + gamma) * self.norm(x) + beta
360
+
361
+ class UpSample1d(nn.Module):
362
+ def __init__(self, layer_type):
363
+ super().__init__()
364
+ self.layer_type = layer_type
365
+
366
+ def forward(self, x):
367
+ if self.layer_type == 'none':
368
+ return x
369
+ else:
370
+ return F.interpolate(x, scale_factor=2, mode='nearest')
371
+
372
+ class AdainResBlk1d(nn.Module):
373
+ def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
374
+ upsample='none', dropout_p=0.0):
375
+ super().__init__()
376
+ self.actv = actv
377
+ self.upsample_type = upsample
378
+ self.upsample = UpSample1d(upsample)
379
+ self.learned_sc = dim_in != dim_out
380
+ self._build_weights(dim_in, dim_out, style_dim)
381
+ self.dropout = nn.Dropout(dropout_p)
382
+
383
+ if upsample == 'none':
384
+ self.pool = nn.Identity()
385
+ else:
386
+ self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
387
+
388
+
389
+ def _build_weights(self, dim_in, dim_out, style_dim):
390
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
391
+ self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
392
+ self.norm1 = AdaIN1d(style_dim, dim_in)
393
+ self.norm2 = AdaIN1d(style_dim, dim_out)
394
+ if self.learned_sc:
395
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
396
+
397
+ def _shortcut(self, x):
398
+ x = self.upsample(x)
399
+ if self.learned_sc:
400
+ x = self.conv1x1(x)
401
+ return x
402
+
403
+ def _residual(self, x, s):
404
+ x = self.norm1(x, s)
405
+ x = self.actv(x)
406
+ x = self.pool(x)
407
+ x = self.conv1(self.dropout(x))
408
+ x = self.norm2(x, s)
409
+ x = self.actv(x)
410
+ x = self.conv2(self.dropout(x))
411
+ return x
412
+
413
+ def forward(self, x, s):
414
+ out = self._residual(x, s)
415
+ out = (out + self._shortcut(x)) / math.sqrt(2)
416
+ return out
417
+
418
+ class AdaLayerNorm(nn.Module):
419
+ def __init__(self, style_dim, channels, eps=1e-5):
420
+ super().__init__()
421
+ self.channels = channels
422
+ self.eps = eps
423
+
424
+ self.fc = nn.Linear(style_dim, channels*2)
425
+
426
+ def forward(self, x, s):
427
+ x = x.transpose(-1, -2)
428
+ x = x.transpose(1, -1)
429
+
430
+ h = self.fc(s)
431
+ h = h.view(h.size(0), h.size(1), 1)
432
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
433
+ gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
434
+
435
+
436
+ x = F.layer_norm(x, (self.channels,), eps=self.eps)
437
+ x = (1 + gamma) * x + beta
438
+ return x.transpose(1, -1).transpose(-1, -2)
439
+
440
+ class ProsodyPredictor(nn.Module):
441
+
442
+ def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
443
+ super().__init__()
444
+
445
+ self.text_encoder = DurationEncoder(sty_dim=style_dim,
446
+ d_model=d_hid,
447
+ nlayers=nlayers,
448
+ dropout=dropout)
449
+
450
+ self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
451
+ self.duration_proj = LinearNorm(d_hid, max_dur)
452
+
453
+ self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
454
+ self.F0 = nn.ModuleList()
455
+ self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
456
+ self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
457
+ self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
458
+
459
+ self.N = nn.ModuleList()
460
+ self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
461
+ self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
462
+ self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
463
+
464
+ self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
465
+ self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
466
+
467
+
468
+ def forward(self, texts, style, text_lengths, alignment, m):
469
+ d = self.text_encoder(texts, style, text_lengths, m)
470
+
471
+ batch_size = d.shape[0]
472
+ text_size = d.shape[1]
473
+
474
+ # predict duration
475
+ input_lengths = text_lengths.cpu().numpy()
476
+ x = nn.utils.rnn.pack_padded_sequence(
477
+ d, input_lengths, batch_first=True, enforce_sorted=False)
478
+
479
+ m = m.to(text_lengths.device).unsqueeze(1)
480
+
481
+ self.lstm.flatten_parameters()
482
+ x, _ = self.lstm(x)
483
+ x, _ = nn.utils.rnn.pad_packed_sequence(
484
+ x, batch_first=True)
485
+
486
+ x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
487
+
488
+ x_pad[:, :x.shape[1], :] = x
489
+ x = x_pad.to(x.device)
490
+
491
+ duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
492
+
493
+ en = (d.transpose(-1, -2) @ alignment)
494
+
495
+ return duration.squeeze(-1), en
496
+
497
+ def F0Ntrain(self, x, s):
498
+ x, _ = self.shared(x.transpose(-1, -2))
499
+
500
+ F0 = x.transpose(-1, -2)
501
+ for block in self.F0:
502
+ F0 = block(F0, s)
503
+ F0 = self.F0_proj(F0)
504
+
505
+ N = x.transpose(-1, -2)
506
+ for block in self.N:
507
+ N = block(N, s)
508
+ N = self.N_proj(N)
509
+
510
+ return F0.squeeze(1), N.squeeze(1)
511
+
512
+ def length_to_mask(self, lengths):
513
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
514
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
515
+ return mask
516
+
517
+ class DurationEncoder(nn.Module):
518
+
519
+ def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
520
+ super().__init__()
521
+ self.lstms = nn.ModuleList()
522
+ for _ in range(nlayers):
523
+ self.lstms.append(nn.LSTM(d_model + sty_dim,
524
+ d_model // 2,
525
+ num_layers=1,
526
+ batch_first=True,
527
+ bidirectional=True,
528
+ dropout=dropout))
529
+ self.lstms.append(AdaLayerNorm(sty_dim, d_model))
530
+
531
+
532
+ self.dropout = dropout
533
+ self.d_model = d_model
534
+ self.sty_dim = sty_dim
535
+
536
+ def forward(self, x, style, text_lengths, m):
537
+ masks = m.to(text_lengths.device)
538
+
539
+ x = x.permute(2, 0, 1)
540
+ s = style.expand(x.shape[0], x.shape[1], -1)
541
+ x = torch.cat([x, s], axis=-1)
542
+ x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
543
+
544
+ x = x.transpose(0, 1)
545
+ input_lengths = text_lengths.cpu().numpy()
546
+ x = x.transpose(-1, -2)
547
+
548
+ for block in self.lstms:
549
+ if isinstance(block, AdaLayerNorm):
550
+ x = block(x.transpose(-1, -2), style).transpose(-1, -2)
551
+ x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
552
+ x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
553
+ else:
554
+ x = x.transpose(-1, -2)
555
+ x = nn.utils.rnn.pack_padded_sequence(
556
+ x, input_lengths, batch_first=True, enforce_sorted=False)
557
+ block.flatten_parameters()
558
+ x, _ = block(x)
559
+ x, _ = nn.utils.rnn.pad_packed_sequence(
560
+ x, batch_first=True)
561
+ x = F.dropout(x, p=self.dropout, training=self.training)
562
+ x = x.transpose(-1, -2)
563
+
564
+ x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
565
+
566
+ x_pad[:, :, :x.shape[-1]] = x
567
+ x = x_pad.to(x.device)
568
+
569
+ return x.transpose(-1, -2)
570
+
571
+ def inference(self, x, style):
572
+ x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model)
573
+ style = style.expand(x.shape[0], x.shape[1], -1)
574
+ x = torch.cat([x, style], axis=-1)
575
+ src = self.pos_encoder(x)
576
+ output = self.transformer_encoder(src).transpose(0, 1)
577
+ return output
578
+
579
+ def length_to_mask(self, lengths):
580
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
581
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
582
+ return mask
583
+
584
+ def load_F0_models(path):
585
+ # load F0 model
586
+
587
+ F0_model = JDCNet(num_class=1, seq_len=192)
588
+ params = torch.load(path, map_location='cpu')['net']
589
+ F0_model.load_state_dict(params)
590
+ _ = F0_model.train()
591
+
592
+ return F0_model
593
+
594
+ def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG):
595
+ # load ASR model
596
+ def _load_config(path):
597
+ with open(path) as f:
598
+ config = yaml.safe_load(f)
599
+ model_config = config['model_params']
600
+ return model_config
601
+
602
+ def _load_model(model_config, model_path):
603
+ model = ASRCNN(**model_config)
604
+ params = torch.load(model_path, map_location='cpu')['model']
605
+ model.load_state_dict(params)
606
+ return model
607
+
608
+ asr_model_config = _load_config(ASR_MODEL_CONFIG)
609
+ asr_model = _load_model(asr_model_config, ASR_MODEL_PATH)
610
+ _ = asr_model.train()
611
+
612
+ return asr_model
613
+
614
+ def build_model(args, text_aligner, pitch_extractor, bert):
615
+ assert args.decoder.type in ['istftnet', 'hifigan'], 'Decoder type unknown'
616
+
617
+ if args.decoder.type == "istftnet":
618
+ from Modules.istftnet import Decoder
619
+ decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
620
+ resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
621
+ upsample_rates = args.decoder.upsample_rates,
622
+ upsample_initial_channel=args.decoder.upsample_initial_channel,
623
+ resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
624
+ upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
625
+ gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
626
+ else:
627
+ from Modules.hifigan import Decoder
628
+ decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
629
+ resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
630
+ upsample_rates = args.decoder.upsample_rates,
631
+ upsample_initial_channel=args.decoder.upsample_initial_channel,
632
+ resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
633
+ upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
634
+
635
+ text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
636
+
637
+ predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
638
+
639
+ style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder
640
+ predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder
641
+
642
+ # define diffusion model
643
+ if args.multispeaker:
644
+ transformer = StyleTransformer1d(channels=args.style_dim*2,
645
+ context_embedding_features=bert.config.hidden_size,
646
+ context_features=args.style_dim*2,
647
+ **args.diffusion.transformer)
648
+ else:
649
+ transformer = Transformer1d(channels=args.style_dim*2,
650
+ context_embedding_features=bert.config.hidden_size,
651
+ **args.diffusion.transformer)
652
+
653
+ diffusion = AudioDiffusionConditional(
654
+ in_channels=1,
655
+ embedding_max_length=bert.config.max_position_embeddings,
656
+ embedding_features=bert.config.hidden_size,
657
+ embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements,
658
+ channels=args.style_dim*2,
659
+ context_features=args.style_dim*2,
660
+ )
661
+
662
+ diffusion.diffusion = KDiffusion(
663
+ net=diffusion.unet,
664
+ sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std),
665
+ sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model
666
+ dynamic_threshold=0.0
667
+ )
668
+ diffusion.diffusion.net = transformer
669
+ diffusion.unet = transformer
670
+
671
+
672
+ nets = Munch(
673
+ bert=bert,
674
+ bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim),
675
+
676
+ predictor=predictor,
677
+ decoder=decoder,
678
+ text_encoder=text_encoder,
679
+
680
+ predictor_encoder=predictor_encoder,
681
+ style_encoder=style_encoder,
682
+ diffusion=diffusion,
683
+
684
+ text_aligner = text_aligner,
685
+ pitch_extractor=pitch_extractor,
686
+
687
+ mpd = MultiPeriodDiscriminator(),
688
+ msd = MultiResSpecDiscriminator(),
689
+
690
+ # slm discriminator head
691
+ wd = WavLMDiscriminator(args.slm.hidden, args.slm.nlayers, args.slm.initial_channel),
692
+ )
693
+
694
+ return nets
695
+
696
+ def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[]):
697
+ state = torch.load(path, map_location='cpu')
698
+ params = state['net']
699
+ for key in model:
700
+ if key in params and key not in ignore_modules:
701
+ print('%s loaded' % key)
702
+ model[key].load_state_dict(params[key], strict=False)
703
+ _ = [model[key].eval() for key in model]
704
+
705
+ if not load_only_params:
706
+ epoch = state["epoch"]
707
+ iters = state["iters"]
708
+ optimizer.load_state_dict(state["optimizer"])
709
+ else:
710
+ epoch = 0
711
+ iters = 0
712
+
713
+ return model, optimizer, epoch, iters
optimizers.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #coding:utf-8
2
+ import os, sys
3
+ import os.path as osp
4
+ import numpy as np
5
+ import torch
6
+ from torch import nn
7
+ from torch.optim import Optimizer
8
+ from functools import reduce
9
+ from torch.optim import AdamW
10
+
11
+ class MultiOptimizer:
12
+ def __init__(self, optimizers={}, schedulers={}):
13
+ self.optimizers = optimizers
14
+ self.schedulers = schedulers
15
+ self.keys = list(optimizers.keys())
16
+ self.param_groups = reduce(lambda x,y: x+y, [v.param_groups for v in self.optimizers.values()])
17
+
18
+ def state_dict(self):
19
+ state_dicts = [(key, self.optimizers[key].state_dict())\
20
+ for key in self.keys]
21
+ return state_dicts
22
+
23
+ def load_state_dict(self, state_dict):
24
+ for key, val in state_dict:
25
+ try:
26
+ self.optimizers[key].load_state_dict(val)
27
+ except:
28
+ print("Unloaded %s" % key)
29
+
30
+ def step(self, key=None, scaler=None):
31
+ keys = [key] if key is not None else self.keys
32
+ _ = [self._step(key, scaler) for key in keys]
33
+
34
+ def _step(self, key, scaler=None):
35
+ if scaler is not None:
36
+ scaler.step(self.optimizers[key])
37
+ scaler.update()
38
+ else:
39
+ self.optimizers[key].step()
40
+
41
+ def zero_grad(self, key=None):
42
+ if key is not None:
43
+ self.optimizers[key].zero_grad()
44
+ else:
45
+ _ = [self.optimizers[key].zero_grad() for key in self.keys]
46
+
47
+ def scheduler(self, *args, key=None):
48
+ if key is not None:
49
+ self.schedulers[key].step(*args)
50
+ else:
51
+ _ = [self.schedulers[key].step(*args) for key in self.keys]
52
+
53
+ def define_scheduler(optimizer, params):
54
+ scheduler = torch.optim.lr_scheduler.OneCycleLR(
55
+ optimizer,
56
+ max_lr=params.get('max_lr', 2e-4),
57
+ epochs=params.get('epochs', 200),
58
+ steps_per_epoch=params.get('steps_per_epoch', 1000),
59
+ pct_start=params.get('pct_start', 0.0),
60
+ div_factor=1,
61
+ final_div_factor=1)
62
+
63
+ return scheduler
64
+
65
+ def build_optimizer(parameters_dict, scheduler_params_dict, lr):
66
+ optim = dict([(key, AdamW(params, lr=lr, weight_decay=1e-4, betas=(0.0, 0.99), eps=1e-9))
67
+ for key, params in parameters_dict.items()])
68
+
69
+ schedulers = dict([(key, define_scheduler(opt, scheduler_params_dict[key])) \
70
+ for key, opt in optim.items()])
71
+
72
+ multi_optim = MultiOptimizer(optim, schedulers)
73
+ return multi_optim
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SoundFile
2
+ torchaudio
3
+ munch
4
+ torch
5
+ pydub
6
+ pyyaml
7
+ librosa
8
+ nltk
9
+ matplotlib
10
+ accelerate
11
+ transformers
12
+ einops
13
+ einops-exts
14
+ tqdm
15
+ typing
16
+ typing-extensions
17
+ git+https://github.com/resemble-ai/monotonic_align.git
text_utils.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # IPA Phonemizer: https://github.com/bootphon/phonemizer
2
+
3
+ _pad = "$"
4
+ _punctuation = ';:,.!?¡¿—…"«»“” '
5
+ _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
6
+ _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
7
+
8
+ # Export all symbols:
9
+ symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
10
+
11
+ dicts = {}
12
+ for i in range(len((symbols))):
13
+ dicts[symbols[i]] = i
14
+
15
+ class TextCleaner:
16
+ def __init__(self, dummy=None):
17
+ self.word_index_dictionary = dicts
18
+ print(len(dicts))
19
+ def __call__(self, text):
20
+ indexes = []
21
+ for char in text:
22
+ try:
23
+ indexes.append(self.word_index_dictionary[char])
24
+ except KeyError:
25
+ print(text)
26
+ return indexes
train_finetune.py ADDED
@@ -0,0 +1,707 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # load packages
2
+ import random
3
+ import yaml
4
+ import time
5
+ from munch import Munch
6
+ import numpy as np
7
+ import torch
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ import torchaudio
11
+ import librosa
12
+ import click
13
+ import shutil
14
+ import warnings
15
+ warnings.simplefilter('ignore')
16
+ from torch.utils.tensorboard import SummaryWriter
17
+
18
+ from meldataset import build_dataloader
19
+
20
+ from Utils.ASR.models import ASRCNN
21
+ from Utils.JDC.model import JDCNet
22
+ from Utils.PLBERT.util import load_plbert
23
+
24
+ from models import *
25
+ from losses import *
26
+ from utils import *
27
+
28
+ from Modules.slmadv import SLMAdversarialLoss
29
+ from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
30
+
31
+ from optimizers import build_optimizer
32
+
33
+ # simple fix for dataparallel that allows access to class attributes
34
+ class MyDataParallel(torch.nn.DataParallel):
35
+ def __getattr__(self, name):
36
+ try:
37
+ return super().__getattr__(name)
38
+ except AttributeError:
39
+ return getattr(self.module, name)
40
+
41
+ import logging
42
+ from logging import StreamHandler
43
+ logger = logging.getLogger(__name__)
44
+ logger.setLevel(logging.DEBUG)
45
+ handler = StreamHandler()
46
+ handler.setLevel(logging.DEBUG)
47
+ logger.addHandler(handler)
48
+
49
+
50
+ @click.command()
51
+ @click.option('-p', '--config_path', default='Configs/config_ft.yml', type=str)
52
+ def main(config_path):
53
+ config = yaml.safe_load(open(config_path))
54
+
55
+ log_dir = config['log_dir']
56
+ if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
57
+ shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
58
+ writer = SummaryWriter(log_dir + "/tensorboard")
59
+
60
+ # write logs
61
+ file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
62
+ file_handler.setLevel(logging.DEBUG)
63
+ file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
64
+ logger.addHandler(file_handler)
65
+
66
+
67
+ batch_size = config.get('batch_size', 10)
68
+
69
+ epochs = config.get('epochs', 200)
70
+ save_freq = config.get('save_freq', 2)
71
+ log_interval = config.get('log_interval', 10)
72
+ saving_epoch = config.get('save_freq', 2)
73
+
74
+ data_params = config.get('data_params', None)
75
+ sr = config['preprocess_params'].get('sr', 24000)
76
+ train_path = data_params['train_data']
77
+ val_path = data_params['val_data']
78
+ root_path = data_params['root_path']
79
+ min_length = data_params['min_length']
80
+ OOD_data = data_params['OOD_data']
81
+
82
+ max_len = config.get('max_len', 200)
83
+
84
+ loss_params = Munch(config['loss_params'])
85
+ diff_epoch = loss_params.diff_epoch
86
+ joint_epoch = loss_params.joint_epoch
87
+
88
+ optimizer_params = Munch(config['optimizer_params'])
89
+
90
+ train_list, val_list = get_data_path_list(train_path, val_path)
91
+ device = 'cuda'
92
+
93
+ train_dataloader = build_dataloader(train_list,
94
+ root_path,
95
+ OOD_data=OOD_data,
96
+ min_length=min_length,
97
+ batch_size=batch_size,
98
+ num_workers=2,
99
+ dataset_config={},
100
+ device=device)
101
+
102
+ val_dataloader = build_dataloader(val_list,
103
+ root_path,
104
+ OOD_data=OOD_data,
105
+ min_length=min_length,
106
+ batch_size=batch_size,
107
+ validation=True,
108
+ num_workers=0,
109
+ device=device,
110
+ dataset_config={})
111
+
112
+ # load pretrained ASR model
113
+ ASR_config = config.get('ASR_config', False)
114
+ ASR_path = config.get('ASR_path', False)
115
+ text_aligner = load_ASR_models(ASR_path, ASR_config)
116
+
117
+ # load pretrained F0 model
118
+ F0_path = config.get('F0_path', False)
119
+ pitch_extractor = load_F0_models(F0_path)
120
+
121
+ # load PL-BERT model
122
+ BERT_path = config.get('PLBERT_dir', False)
123
+ plbert = load_plbert(BERT_path)
124
+
125
+ # build model
126
+ model_params = recursive_munch(config['model_params'])
127
+ multispeaker = model_params.multispeaker
128
+ model = build_model(model_params, text_aligner, pitch_extractor, plbert)
129
+ _ = [model[key].to(device) for key in model]
130
+
131
+ # DP
132
+ for key in model:
133
+ if key != "mpd" and key != "msd" and key != "wd":
134
+ model[key] = MyDataParallel(model[key])
135
+
136
+ start_epoch = 0
137
+ iters = 0
138
+
139
+ load_pretrained = config.get('pretrained_model', '') != '' and config.get('second_stage_load_pretrained', False)
140
+
141
+ if not load_pretrained:
142
+ if config.get('first_stage_path', '') != '':
143
+ first_stage_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth'))
144
+ print('Loading the first stage model at %s ...' % first_stage_path)
145
+ model, _, start_epoch, iters = load_checkpoint(model,
146
+ None,
147
+ first_stage_path,
148
+ load_only_params=True,
149
+ ignore_modules=['bert', 'bert_encoder', 'predictor', 'predictor_encoder', 'msd', 'mpd', 'wd', 'diffusion']) # keep starting epoch for tensorboard log
150
+
151
+ # these epochs should be counted from the start epoch
152
+ diff_epoch += start_epoch
153
+ joint_epoch += start_epoch
154
+ epochs += start_epoch
155
+
156
+ model.predictor_encoder = copy.deepcopy(model.style_encoder)
157
+ else:
158
+ raise ValueError('You need to specify the path to the first stage model.')
159
+
160
+ gl = GeneratorLoss(model.mpd, model.msd).to(device)
161
+ dl = DiscriminatorLoss(model.mpd, model.msd).to(device)
162
+ wl = WavLMLoss(model_params.slm.model,
163
+ model.wd,
164
+ sr,
165
+ model_params.slm.sr).to(device)
166
+
167
+ gl = MyDataParallel(gl)
168
+ dl = MyDataParallel(dl)
169
+ wl = MyDataParallel(wl)
170
+
171
+ sampler = DiffusionSampler(
172
+ model.diffusion.diffusion,
173
+ sampler=ADPM2Sampler(),
174
+ sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
175
+ clamp=False
176
+ )
177
+
178
+ scheduler_params = {
179
+ "max_lr": optimizer_params.lr,
180
+ "pct_start": float(0),
181
+ "epochs": epochs,
182
+ "steps_per_epoch": len(train_dataloader),
183
+ }
184
+ scheduler_params_dict= {key: scheduler_params.copy() for key in model}
185
+ scheduler_params_dict['bert']['max_lr'] = optimizer_params.bert_lr * 2
186
+ scheduler_params_dict['decoder']['max_lr'] = optimizer_params.ft_lr * 2
187
+ scheduler_params_dict['style_encoder']['max_lr'] = optimizer_params.ft_lr * 2
188
+
189
+ optimizer = build_optimizer({key: model[key].parameters() for key in model},
190
+ scheduler_params_dict=scheduler_params_dict, lr=optimizer_params.lr)
191
+
192
+ # adjust BERT learning rate
193
+ for g in optimizer.optimizers['bert'].param_groups:
194
+ g['betas'] = (0.9, 0.99)
195
+ g['lr'] = optimizer_params.bert_lr
196
+ g['initial_lr'] = optimizer_params.bert_lr
197
+ g['min_lr'] = 0
198
+ g['weight_decay'] = 0.01
199
+
200
+ # adjust acoustic module learning rate
201
+ for module in ["decoder", "style_encoder"]:
202
+ for g in optimizer.optimizers[module].param_groups:
203
+ g['betas'] = (0.0, 0.99)
204
+ g['lr'] = optimizer_params.ft_lr
205
+ g['initial_lr'] = optimizer_params.ft_lr
206
+ g['min_lr'] = 0
207
+ g['weight_decay'] = 1e-4
208
+
209
+ # load models if there is a model
210
+ if load_pretrained:
211
+ model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'],
212
+ load_only_params=config.get('load_only_params', True))
213
+
214
+ n_down = model.text_aligner.n_down
215
+
216
+ best_loss = float('inf') # best test loss
217
+ loss_train_record = list([])
218
+ loss_test_record = list([])
219
+ iters = 0
220
+
221
+ criterion = nn.L1Loss() # F0 loss (regression)
222
+ torch.cuda.empty_cache()
223
+
224
+ stft_loss = MultiResolutionSTFTLoss().to(device)
225
+
226
+ print('BERT', optimizer.optimizers['bert'])
227
+ print('decoder', optimizer.optimizers['decoder'])
228
+
229
+ start_ds = False
230
+
231
+ running_std = []
232
+
233
+ slmadv_params = Munch(config['slmadv_params'])
234
+ slmadv = SLMAdversarialLoss(model, wl, sampler,
235
+ slmadv_params.min_len,
236
+ slmadv_params.max_len,
237
+ batch_percentage=slmadv_params.batch_percentage,
238
+ skip_update=slmadv_params.iter,
239
+ sig=slmadv_params.sig
240
+ )
241
+
242
+
243
+ for epoch in range(start_epoch, epochs):
244
+ running_loss = 0
245
+ start_time = time.time()
246
+
247
+ _ = [model[key].eval() for key in model]
248
+
249
+ model.text_aligner.train()
250
+ model.text_encoder.train()
251
+
252
+ model.predictor.train()
253
+ model.bert_encoder.train()
254
+ model.bert.train()
255
+ model.msd.train()
256
+ model.mpd.train()
257
+
258
+ for i, batch in enumerate(train_dataloader):
259
+ waves = batch[0]
260
+ batch = [b.to(device) for b in batch[1:]]
261
+ texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
262
+ with torch.no_grad():
263
+ mask = length_to_mask(mel_input_length // (2 ** n_down)).to(device)
264
+ mel_mask = length_to_mask(mel_input_length).to(device)
265
+ text_mask = length_to_mask(input_lengths).to(texts.device)
266
+
267
+ # compute reference styles
268
+ if multispeaker and epoch >= diff_epoch:
269
+ ref_ss = model.style_encoder(ref_mels.unsqueeze(1))
270
+ ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1))
271
+ ref = torch.cat([ref_ss, ref_sp], dim=1)
272
+
273
+ try:
274
+ ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)
275
+ s2s_attn = s2s_attn.transpose(-1, -2)
276
+ s2s_attn = s2s_attn[..., 1:]
277
+ s2s_attn = s2s_attn.transpose(-1, -2)
278
+ except:
279
+ continue
280
+
281
+ mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
282
+ s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
283
+
284
+ # encode
285
+ t_en = model.text_encoder(texts, input_lengths, text_mask)
286
+
287
+ # 50% of chance of using monotonic version
288
+ if bool(random.getrandbits(1)):
289
+ asr = (t_en @ s2s_attn)
290
+ else:
291
+ asr = (t_en @ s2s_attn_mono)
292
+
293
+ d_gt = s2s_attn_mono.sum(axis=-1).detach()
294
+
295
+ # compute the style of the entire utterance
296
+ # this operation cannot be done in batch because of the avgpool layer (may need to work on masked avgpool)
297
+ ss = []
298
+ gs = []
299
+ for bib in range(len(mel_input_length)):
300
+ mel_length = int(mel_input_length[bib].item())
301
+ mel = mels[bib, :, :mel_input_length[bib]]
302
+ s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
303
+ ss.append(s)
304
+ s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
305
+ gs.append(s)
306
+
307
+ s_dur = torch.stack(ss).squeeze() # global prosodic styles
308
+ gs = torch.stack(gs).squeeze() # global acoustic styles
309
+ s_trg = torch.cat([gs, s_dur], dim=-1).detach() # ground truth for denoiser
310
+
311
+ bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
312
+ d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
313
+
314
+ # denoiser training
315
+ if epoch >= diff_epoch:
316
+ num_steps = np.random.randint(3, 5)
317
+
318
+ if model_params.diffusion.dist.estimate_sigma_data:
319
+ model.diffusion.module.diffusion.sigma_data = s_trg.std(axis=-1).mean().item() # batch-wise std estimation
320
+ running_std.append(model.diffusion.module.diffusion.sigma_data)
321
+
322
+ if multispeaker:
323
+ s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device),
324
+ embedding=bert_dur,
325
+ embedding_scale=1,
326
+ features=ref, # reference from the same speaker as the embedding
327
+ embedding_mask_proba=0.1,
328
+ num_steps=num_steps).squeeze(1)
329
+ loss_diff = model.diffusion(s_trg.unsqueeze(1), embedding=bert_dur, features=ref).mean() # EDM loss
330
+ loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss
331
+ else:
332
+ s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device),
333
+ embedding=bert_dur,
334
+ embedding_scale=1,
335
+ embedding_mask_proba=0.1,
336
+ num_steps=num_steps).squeeze(1)
337
+ loss_diff = model.diffusion.module.diffusion(s_trg.unsqueeze(1), embedding=bert_dur).mean() # EDM loss
338
+ loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss
339
+ else:
340
+ loss_sty = 0
341
+ loss_diff = 0
342
+
343
+
344
+ s_loss = 0
345
+
346
+
347
+ d, p = model.predictor(d_en, s_dur,
348
+ input_lengths,
349
+ s2s_attn_mono,
350
+ text_mask)
351
+
352
+ mel_len_st = int(mel_input_length.min().item() / 2 - 1)
353
+ mel_len = min(int(mel_input_length.min().item() / 2 - 1), max_len // 2)
354
+ en = []
355
+ gt = []
356
+ p_en = []
357
+ wav = []
358
+ st = []
359
+
360
+ for bib in range(len(mel_input_length)):
361
+ mel_length = int(mel_input_length[bib].item() / 2)
362
+
363
+ random_start = np.random.randint(0, mel_length - mel_len)
364
+ en.append(asr[bib, :, random_start:random_start+mel_len])
365
+ p_en.append(p[bib, :, random_start:random_start+mel_len])
366
+ gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
367
+
368
+ y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
369
+ wav.append(torch.from_numpy(y).to(device))
370
+
371
+ # style reference (better to be different from the GT)
372
+ random_start = np.random.randint(0, mel_length - mel_len_st)
373
+ st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)])
374
+
375
+ wav = torch.stack(wav).float().detach()
376
+
377
+ en = torch.stack(en)
378
+ p_en = torch.stack(p_en)
379
+ gt = torch.stack(gt).detach()
380
+ st = torch.stack(st).detach()
381
+
382
+
383
+ if gt.size(-1) < 80:
384
+ continue
385
+
386
+ s = model.style_encoder(gt.unsqueeze(1))
387
+ s_dur = model.predictor_encoder(gt.unsqueeze(1))
388
+
389
+ with torch.no_grad():
390
+ F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
391
+ F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze()
392
+
393
+ N_real = log_norm(gt.unsqueeze(1)).squeeze(1)
394
+
395
+ y_rec_gt = wav.unsqueeze(1)
396
+ y_rec_gt_pred = model.decoder(en, F0_real, N_real, s)
397
+
398
+ wav = y_rec_gt
399
+
400
+ F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur)
401
+
402
+ y_rec = model.decoder(en, F0_fake, N_fake, s)
403
+
404
+ loss_F0_rec = (F.smooth_l1_loss(F0_real, F0_fake)) / 10
405
+ loss_norm_rec = F.smooth_l1_loss(N_real, N_fake)
406
+
407
+ optimizer.zero_grad()
408
+ d_loss = dl(wav.detach(), y_rec.detach()).mean()
409
+ d_loss.backward()
410
+ optimizer.step('msd')
411
+ optimizer.step('mpd')
412
+
413
+ # generator loss
414
+ optimizer.zero_grad()
415
+
416
+ loss_mel = stft_loss(y_rec, wav)
417
+ loss_gen_all = gl(wav, y_rec).mean()
418
+ loss_lm = wl(wav.detach().squeeze(), y_rec.squeeze()).mean()
419
+
420
+ loss_ce = 0
421
+ loss_dur = 0
422
+ for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
423
+ _s2s_pred = _s2s_pred[:_text_length, :]
424
+ _text_input = _text_input[:_text_length].long()
425
+ _s2s_trg = torch.zeros_like(_s2s_pred)
426
+ for p in range(_s2s_trg.shape[0]):
427
+ _s2s_trg[p, :_text_input[p]] = 1
428
+ _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
429
+
430
+ loss_dur += F.l1_loss(_dur_pred[1:_text_length-1],
431
+ _text_input[1:_text_length-1])
432
+ loss_ce += F.binary_cross_entropy_with_logits(_s2s_pred.flatten(), _s2s_trg.flatten())
433
+
434
+ loss_ce /= texts.size(0)
435
+ loss_dur /= texts.size(0)
436
+
437
+ loss_s2s = 0
438
+ for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths):
439
+ loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length])
440
+ loss_s2s /= texts.size(0)
441
+
442
+ loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10
443
+
444
+ g_loss = loss_params.lambda_mel * loss_mel + \
445
+ loss_params.lambda_F0 * loss_F0_rec + \
446
+ loss_params.lambda_ce * loss_ce + \
447
+ loss_params.lambda_norm * loss_norm_rec + \
448
+ loss_params.lambda_dur * loss_dur + \
449
+ loss_params.lambda_gen * loss_gen_all + \
450
+ loss_params.lambda_slm * loss_lm + \
451
+ loss_params.lambda_sty * loss_sty + \
452
+ loss_params.lambda_diff * loss_diff + \
453
+ loss_params.lambda_mono * loss_mono + \
454
+ loss_params.lambda_s2s * loss_s2s
455
+
456
+ running_loss += loss_mel.item()
457
+ g_loss.backward()
458
+ if torch.isnan(g_loss):
459
+ from IPython.core.debugger import set_trace
460
+ set_trace()
461
+
462
+ optimizer.step('bert_encoder')
463
+ optimizer.step('bert')
464
+ optimizer.step('predictor')
465
+ optimizer.step('predictor_encoder')
466
+ optimizer.step('style_encoder')
467
+ optimizer.step('decoder')
468
+
469
+ optimizer.step('text_encoder')
470
+ optimizer.step('text_aligner')
471
+
472
+ if epoch >= diff_epoch:
473
+ optimizer.step('diffusion')
474
+
475
+ d_loss_slm, loss_gen_lm = 0, 0
476
+ if epoch >= joint_epoch:
477
+ # randomly pick whether to use in-distribution text
478
+ if np.random.rand() < 0.5:
479
+ use_ind = True
480
+ else:
481
+ use_ind = False
482
+
483
+ if use_ind:
484
+ ref_lengths = input_lengths
485
+ ref_texts = texts
486
+
487
+ slm_out = slmadv(i,
488
+ y_rec_gt,
489
+ y_rec_gt_pred,
490
+ waves,
491
+ mel_input_length,
492
+ ref_texts,
493
+ ref_lengths, use_ind, s_trg.detach(), ref if multispeaker else None)
494
+
495
+ if slm_out is not None:
496
+ d_loss_slm, loss_gen_lm, y_pred = slm_out
497
+
498
+ # SLM generator loss
499
+ optimizer.zero_grad()
500
+ loss_gen_lm.backward()
501
+
502
+ # compute the gradient norm
503
+ total_norm = {}
504
+ for key in model.keys():
505
+ total_norm[key] = 0
506
+ parameters = [p for p in model[key].parameters() if p.grad is not None and p.requires_grad]
507
+ for p in parameters:
508
+ param_norm = p.grad.detach().data.norm(2)
509
+ total_norm[key] += param_norm.item() ** 2
510
+ total_norm[key] = total_norm[key] ** 0.5
511
+
512
+ # gradient scaling
513
+ if total_norm['predictor'] > slmadv_params.thresh:
514
+ for key in model.keys():
515
+ for p in model[key].parameters():
516
+ if p.grad is not None:
517
+ p.grad *= (1 / total_norm['predictor'])
518
+
519
+ for p in model.predictor.duration_proj.parameters():
520
+ if p.grad is not None:
521
+ p.grad *= slmadv_params.scale
522
+
523
+ for p in model.predictor.lstm.parameters():
524
+ if p.grad is not None:
525
+ p.grad *= slmadv_params.scale
526
+
527
+ for p in model.diffusion.parameters():
528
+ if p.grad is not None:
529
+ p.grad *= slmadv_params.scale
530
+
531
+ optimizer.step('bert_encoder')
532
+ optimizer.step('bert')
533
+ optimizer.step('predictor')
534
+ optimizer.step('diffusion')
535
+
536
+ # SLM discriminator loss
537
+ if d_loss_slm != 0:
538
+ optimizer.zero_grad()
539
+ d_loss_slm.backward(retain_graph=True)
540
+ optimizer.step('wd')
541
+
542
+ iters = iters + 1
543
+
544
+ if (i+1)%log_interval == 0:
545
+ logger.info ('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f, SLoss: %.5f, S2S Loss: %.5f, Mono Loss: %.5f'
546
+ %(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, d_loss, loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff, d_loss_slm, loss_gen_lm, s_loss, loss_s2s, loss_mono))
547
+
548
+ writer.add_scalar('train/mel_loss', running_loss / log_interval, iters)
549
+ writer.add_scalar('train/gen_loss', loss_gen_all, iters)
550
+ writer.add_scalar('train/d_loss', d_loss, iters)
551
+ writer.add_scalar('train/ce_loss', loss_ce, iters)
552
+ writer.add_scalar('train/dur_loss', loss_dur, iters)
553
+ writer.add_scalar('train/slm_loss', loss_lm, iters)
554
+ writer.add_scalar('train/norm_loss', loss_norm_rec, iters)
555
+ writer.add_scalar('train/F0_loss', loss_F0_rec, iters)
556
+ writer.add_scalar('train/sty_loss', loss_sty, iters)
557
+ writer.add_scalar('train/diff_loss', loss_diff, iters)
558
+ writer.add_scalar('train/d_loss_slm', d_loss_slm, iters)
559
+ writer.add_scalar('train/gen_loss_slm', loss_gen_lm, iters)
560
+
561
+ running_loss = 0
562
+
563
+ print('Time elasped:', time.time()-start_time)
564
+
565
+ loss_test = 0
566
+ loss_align = 0
567
+ loss_f = 0
568
+ _ = [model[key].eval() for key in model]
569
+
570
+ with torch.no_grad():
571
+ iters_test = 0
572
+ for batch_idx, batch in enumerate(val_dataloader):
573
+ optimizer.zero_grad()
574
+
575
+ try:
576
+ waves = batch[0]
577
+ batch = [b.to(device) for b in batch[1:]]
578
+ texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
579
+ with torch.no_grad():
580
+ mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
581
+ text_mask = length_to_mask(input_lengths).to(texts.device)
582
+
583
+ _, _, s2s_attn = model.text_aligner(mels, mask, texts)
584
+ s2s_attn = s2s_attn.transpose(-1, -2)
585
+ s2s_attn = s2s_attn[..., 1:]
586
+ s2s_attn = s2s_attn.transpose(-1, -2)
587
+
588
+ mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
589
+ s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
590
+
591
+ # encode
592
+ t_en = model.text_encoder(texts, input_lengths, text_mask)
593
+ asr = (t_en @ s2s_attn_mono)
594
+
595
+ d_gt = s2s_attn_mono.sum(axis=-1).detach()
596
+
597
+ ss = []
598
+ gs = []
599
+
600
+ for bib in range(len(mel_input_length)):
601
+ mel_length = int(mel_input_length[bib].item())
602
+ mel = mels[bib, :, :mel_input_length[bib]]
603
+ s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
604
+ ss.append(s)
605
+ s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
606
+ gs.append(s)
607
+
608
+ s = torch.stack(ss).squeeze()
609
+ gs = torch.stack(gs).squeeze()
610
+ s_trg = torch.cat([s, gs], dim=-1).detach()
611
+
612
+ bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
613
+ d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
614
+ d, p = model.predictor(d_en, s,
615
+ input_lengths,
616
+ s2s_attn_mono,
617
+ text_mask)
618
+ # get clips
619
+ mel_len = int(mel_input_length.min().item() / 2 - 1)
620
+ en = []
621
+ gt = []
622
+
623
+ p_en = []
624
+ wav = []
625
+
626
+ for bib in range(len(mel_input_length)):
627
+ mel_length = int(mel_input_length[bib].item() / 2)
628
+
629
+ random_start = np.random.randint(0, mel_length - mel_len)
630
+ en.append(asr[bib, :, random_start:random_start+mel_len])
631
+ p_en.append(p[bib, :, random_start:random_start+mel_len])
632
+
633
+ gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
634
+ y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
635
+ wav.append(torch.from_numpy(y).to(device))
636
+
637
+ wav = torch.stack(wav).float().detach()
638
+
639
+ en = torch.stack(en)
640
+ p_en = torch.stack(p_en)
641
+ gt = torch.stack(gt).detach()
642
+ s = model.predictor_encoder(gt.unsqueeze(1))
643
+
644
+ F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s)
645
+
646
+ loss_dur = 0
647
+ for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
648
+ _s2s_pred = _s2s_pred[:_text_length, :]
649
+ _text_input = _text_input[:_text_length].long()
650
+ _s2s_trg = torch.zeros_like(_s2s_pred)
651
+ for bib in range(_s2s_trg.shape[0]):
652
+ _s2s_trg[bib, :_text_input[bib]] = 1
653
+ _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
654
+ loss_dur += F.l1_loss(_dur_pred[1:_text_length-1],
655
+ _text_input[1:_text_length-1])
656
+
657
+ loss_dur /= texts.size(0)
658
+
659
+ s = model.style_encoder(gt.unsqueeze(1))
660
+
661
+ y_rec = model.decoder(en, F0_fake, N_fake, s)
662
+ loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
663
+
664
+ F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
665
+
666
+ loss_F0 = F.l1_loss(F0_real, F0_fake) / 10
667
+
668
+ loss_test += (loss_mel).mean()
669
+ loss_align += (loss_dur).mean()
670
+ loss_f += (loss_F0).mean()
671
+
672
+ iters_test += 1
673
+ except:
674
+ continue
675
+
676
+ print('Epochs:', epoch + 1)
677
+ logger.info('Validation loss: %.3f, Dur loss: %.3f, F0 loss: %.3f' % (loss_test / iters_test, loss_align / iters_test, loss_f / iters_test) + '\n\n\n')
678
+ print('\n\n\n')
679
+ writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1)
680
+ writer.add_scalar('eval/dur_loss', loss_test / iters_test, epoch + 1)
681
+ writer.add_scalar('eval/F0_loss', loss_f / iters_test, epoch + 1)
682
+
683
+
684
+ if (epoch + 1) % save_freq == 0 :
685
+ if (loss_test / iters_test) < best_loss:
686
+ best_loss = loss_test / iters_test
687
+ print('Saving..')
688
+ state = {
689
+ 'net': {key: model[key].state_dict() for key in model},
690
+ 'optimizer': optimizer.state_dict(),
691
+ 'iters': iters,
692
+ 'val_loss': loss_test / iters_test,
693
+ 'epoch': epoch,
694
+ }
695
+ save_path = osp.join(log_dir, 'epoch_2nd_%05d.pth' % epoch)
696
+ torch.save(state, save_path)
697
+
698
+ # if estimate sigma, save the estimated simga
699
+ if model_params.diffusion.dist.estimate_sigma_data:
700
+ config['model_params']['diffusion']['dist']['sigma_data'] = float(np.mean(running_std))
701
+
702
+ with open(osp.join(log_dir, osp.basename(config_path)), 'w') as outfile:
703
+ yaml.dump(config, outfile, default_flow_style=True)
704
+
705
+
706
+ if __name__=="__main__":
707
+ main()
train_finetune_accelerate.py ADDED
@@ -0,0 +1,714 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # load packages
2
+ import random
3
+ import yaml
4
+ import time
5
+ from munch import Munch
6
+ import numpy as np
7
+ import torch
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ import torchaudio
11
+ import librosa
12
+ import click
13
+ import shutil
14
+ import warnings
15
+ warnings.simplefilter('ignore')
16
+ from torch.utils.tensorboard import SummaryWriter
17
+
18
+ from meldataset import build_dataloader
19
+
20
+ from Utils.ASR.models import ASRCNN
21
+ from Utils.JDC.model import JDCNet
22
+ from Utils.PLBERT.util import load_plbert
23
+
24
+ from models import *
25
+ from losses import *
26
+ from utils import *
27
+
28
+ from Modules.slmadv import SLMAdversarialLoss
29
+ from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
30
+
31
+ from optimizers import build_optimizer
32
+
33
+ from accelerate import Accelerator
34
+
35
+ accelerator = Accelerator()
36
+
37
+ # simple fix for dataparallel that allows access to class attributes
38
+ class MyDataParallel(torch.nn.DataParallel):
39
+ def __getattr__(self, name):
40
+ try:
41
+ return super().__getattr__(name)
42
+ except AttributeError:
43
+ return getattr(self.module, name)
44
+
45
+ import logging
46
+ from logging import StreamHandler
47
+ logger = logging.getLogger(__name__)
48
+ logger.setLevel(logging.DEBUG)
49
+ handler = StreamHandler()
50
+ handler.setLevel(logging.DEBUG)
51
+ logger.addHandler(handler)
52
+
53
+
54
+ @click.command()
55
+ @click.option('-p', '--config_path', default='Configs/config_ft.yml', type=str)
56
+ def main(config_path):
57
+ config = yaml.safe_load(open(config_path))
58
+
59
+ log_dir = config['log_dir']
60
+ if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
61
+ shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
62
+ writer = SummaryWriter(log_dir + "/tensorboard")
63
+
64
+ # write logs
65
+ file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
66
+ file_handler.setLevel(logging.DEBUG)
67
+ file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
68
+ logger.addHandler(file_handler)
69
+
70
+
71
+ batch_size = config.get('batch_size', 10)
72
+
73
+ epochs = config.get('epochs', 200)
74
+ save_freq = config.get('save_freq', 2)
75
+ log_interval = config.get('log_interval', 10)
76
+ saving_epoch = config.get('save_freq', 2)
77
+
78
+ data_params = config.get('data_params', None)
79
+ sr = config['preprocess_params'].get('sr', 24000)
80
+ train_path = data_params['train_data']
81
+ val_path = data_params['val_data']
82
+ root_path = data_params['root_path']
83
+ min_length = data_params['min_length']
84
+ OOD_data = data_params['OOD_data']
85
+
86
+ max_len = config.get('max_len', 200)
87
+
88
+ loss_params = Munch(config['loss_params'])
89
+ diff_epoch = loss_params.diff_epoch
90
+ joint_epoch = loss_params.joint_epoch
91
+
92
+ optimizer_params = Munch(config['optimizer_params'])
93
+
94
+ train_list, val_list = get_data_path_list(train_path, val_path)
95
+ device = accelerator.device
96
+
97
+ train_dataloader = build_dataloader(train_list,
98
+ root_path,
99
+ OOD_data=OOD_data,
100
+ min_length=min_length,
101
+ batch_size=batch_size,
102
+ num_workers=2,
103
+ dataset_config={},
104
+ device=device)
105
+
106
+ val_dataloader = build_dataloader(val_list,
107
+ root_path,
108
+ OOD_data=OOD_data,
109
+ min_length=min_length,
110
+ batch_size=batch_size,
111
+ validation=True,
112
+ num_workers=0,
113
+ device=device,
114
+ dataset_config={})
115
+
116
+ # load pretrained ASR model
117
+ ASR_config = config.get('ASR_config', False)
118
+ ASR_path = config.get('ASR_path', False)
119
+ text_aligner = load_ASR_models(ASR_path, ASR_config)
120
+
121
+ # load pretrained F0 model
122
+ F0_path = config.get('F0_path', False)
123
+ pitch_extractor = load_F0_models(F0_path)
124
+
125
+ # load PL-BERT model
126
+ BERT_path = config.get('PLBERT_dir', False)
127
+ plbert = load_plbert(BERT_path)
128
+
129
+ # build model
130
+ model_params = recursive_munch(config['model_params'])
131
+ multispeaker = model_params.multispeaker
132
+ model = build_model(model_params, text_aligner, pitch_extractor, plbert)
133
+ _ = [model[key].to(device) for key in model]
134
+
135
+ # DP
136
+ for key in model:
137
+ if key != "mpd" and key != "msd" and key != "wd":
138
+ model[key] = MyDataParallel(model[key])
139
+
140
+ start_epoch = 0
141
+ iters = 0
142
+
143
+ load_pretrained = config.get('pretrained_model', '') != '' and config.get('second_stage_load_pretrained', False)
144
+
145
+ if not load_pretrained:
146
+ if config.get('first_stage_path', '') != '':
147
+ first_stage_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth'))
148
+ print('Loading the first stage model at %s ...' % first_stage_path)
149
+ model, _, start_epoch, iters = load_checkpoint(model,
150
+ None,
151
+ first_stage_path,
152
+ load_only_params=True,
153
+ ignore_modules=['bert', 'bert_encoder', 'predictor', 'predictor_encoder', 'msd', 'mpd', 'wd', 'diffusion']) # keep starting epoch for tensorboard log
154
+
155
+ # these epochs should be counted from the start epoch
156
+ diff_epoch += start_epoch
157
+ joint_epoch += start_epoch
158
+ epochs += start_epoch
159
+
160
+ model.predictor_encoder = copy.deepcopy(model.style_encoder)
161
+ else:
162
+ raise ValueError('You need to specify the path to the first stage model.')
163
+
164
+ gl = GeneratorLoss(model.mpd, model.msd).to(device)
165
+ dl = DiscriminatorLoss(model.mpd, model.msd).to(device)
166
+ wl = WavLMLoss(model_params.slm.model,
167
+ model.wd,
168
+ sr,
169
+ model_params.slm.sr).to(device)
170
+
171
+ gl = MyDataParallel(gl)
172
+ dl = MyDataParallel(dl)
173
+ wl = MyDataParallel(wl)
174
+
175
+ sampler = DiffusionSampler(
176
+ model.diffusion.diffusion,
177
+ sampler=ADPM2Sampler(),
178
+ sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
179
+ clamp=False
180
+ )
181
+
182
+ scheduler_params = {
183
+ "max_lr": optimizer_params.lr,
184
+ "pct_start": float(0),
185
+ "epochs": epochs,
186
+ "steps_per_epoch": len(train_dataloader),
187
+ }
188
+ scheduler_params_dict= {key: scheduler_params.copy() for key in model}
189
+ scheduler_params_dict['bert']['max_lr'] = optimizer_params.bert_lr * 2
190
+ scheduler_params_dict['decoder']['max_lr'] = optimizer_params.ft_lr * 2
191
+ scheduler_params_dict['style_encoder']['max_lr'] = optimizer_params.ft_lr * 2
192
+
193
+ optimizer = build_optimizer({key: model[key].parameters() for key in model},
194
+ scheduler_params_dict=scheduler_params_dict, lr=optimizer_params.lr)
195
+
196
+ # adjust BERT learning rate
197
+ for g in optimizer.optimizers['bert'].param_groups:
198
+ g['betas'] = (0.9, 0.99)
199
+ g['lr'] = optimizer_params.bert_lr
200
+ g['initial_lr'] = optimizer_params.bert_lr
201
+ g['min_lr'] = 0
202
+ g['weight_decay'] = 0.01
203
+
204
+ # adjust acoustic module learning rate
205
+ for module in ["decoder", "style_encoder"]:
206
+ for g in optimizer.optimizers[module].param_groups:
207
+ g['betas'] = (0.0, 0.99)
208
+ g['lr'] = optimizer_params.ft_lr
209
+ g['initial_lr'] = optimizer_params.ft_lr
210
+ g['min_lr'] = 0
211
+ g['weight_decay'] = 1e-4
212
+
213
+ # load models if there is a model
214
+ if load_pretrained:
215
+ model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'],
216
+ load_only_params=config.get('load_only_params', True))
217
+
218
+ n_down = model.text_aligner.n_down
219
+
220
+ best_loss = float('inf') # best test loss
221
+ loss_train_record = list([])
222
+ loss_test_record = list([])
223
+ iters = 0
224
+
225
+ criterion = nn.L1Loss() # F0 loss (regression)
226
+ torch.cuda.empty_cache()
227
+
228
+ stft_loss = MultiResolutionSTFTLoss().to(device)
229
+
230
+ print('BERT', optimizer.optimizers['bert'])
231
+ print('decoder', optimizer.optimizers['decoder'])
232
+
233
+ start_ds = False
234
+
235
+ running_std = []
236
+
237
+ slmadv_params = Munch(config['slmadv_params'])
238
+ slmadv = SLMAdversarialLoss(model, wl, sampler,
239
+ slmadv_params.min_len,
240
+ slmadv_params.max_len,
241
+ batch_percentage=slmadv_params.batch_percentage,
242
+ skip_update=slmadv_params.iter,
243
+ sig=slmadv_params.sig
244
+ )
245
+
246
+ model, optimizer, train_dataloader = accelerator.prepare(
247
+ model, optimizer, train_dataloader
248
+ )
249
+
250
+ for epoch in range(start_epoch, epochs):
251
+ running_loss = 0
252
+ start_time = time.time()
253
+
254
+ _ = [model[key].eval() for key in model]
255
+
256
+ model.text_aligner.train()
257
+ model.text_encoder.train()
258
+
259
+ model.predictor.train()
260
+ model.bert_encoder.train()
261
+ model.bert.train()
262
+ model.msd.train()
263
+ model.mpd.train()
264
+
265
+ for i, batch in enumerate(train_dataloader):
266
+ waves = batch[0]
267
+ batch = [b.to(device) for b in batch[1:]]
268
+ texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
269
+ with torch.no_grad():
270
+ mask = length_to_mask(mel_input_length // (2 ** n_down)).to(device)
271
+ mel_mask = length_to_mask(mel_input_length).to(device)
272
+ text_mask = length_to_mask(input_lengths).to(texts.device)
273
+
274
+ # compute reference styles
275
+ if multispeaker and epoch >= diff_epoch:
276
+ ref_ss = model.style_encoder(ref_mels.unsqueeze(1))
277
+ ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1))
278
+ ref = torch.cat([ref_ss, ref_sp], dim=1)
279
+
280
+ try:
281
+ ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)
282
+ s2s_attn = s2s_attn.transpose(-1, -2)
283
+ s2s_attn = s2s_attn[..., 1:]
284
+ s2s_attn = s2s_attn.transpose(-1, -2)
285
+ except:
286
+ continue
287
+
288
+ mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
289
+ s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
290
+
291
+ # encode
292
+ t_en = model.text_encoder(texts, input_lengths, text_mask)
293
+
294
+ # 50% of chance of using monotonic version
295
+ if bool(random.getrandbits(1)):
296
+ asr = (t_en @ s2s_attn)
297
+ else:
298
+ asr = (t_en @ s2s_attn_mono)
299
+
300
+ d_gt = s2s_attn_mono.sum(axis=-1).detach()
301
+
302
+ # compute the style of the entire utterance
303
+ # this operation cannot be done in batch because of the avgpool layer (may need to work on masked avgpool)
304
+ ss = []
305
+ gs = []
306
+ for bib in range(len(mel_input_length)):
307
+ mel_length = int(mel_input_length[bib].item())
308
+ mel = mels[bib, :, :mel_input_length[bib]]
309
+ s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
310
+ ss.append(s)
311
+ s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
312
+ gs.append(s)
313
+
314
+ s_dur = torch.stack(ss).squeeze() # global prosodic styles
315
+ gs = torch.stack(gs).squeeze() # global acoustic styles
316
+ s_trg = torch.cat([gs, s_dur], dim=-1).detach() # ground truth for denoiser
317
+
318
+ bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
319
+ d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
320
+
321
+ # denoiser training
322
+ if epoch >= diff_epoch:
323
+ num_steps = np.random.randint(3, 5)
324
+
325
+ if model_params.diffusion.dist.estimate_sigma_data:
326
+ model.diffusion.module.diffusion.sigma_data = s_trg.std(axis=-1).mean().item() # batch-wise std estimation
327
+ running_std.append(model.diffusion.module.diffusion.sigma_data)
328
+
329
+ if multispeaker:
330
+ s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device),
331
+ embedding=bert_dur,
332
+ embedding_scale=1,
333
+ features=ref, # reference from the same speaker as the embedding
334
+ embedding_mask_proba=0.1,
335
+ num_steps=num_steps).squeeze(1)
336
+ loss_diff = model.diffusion(s_trg.unsqueeze(1), embedding=bert_dur, features=ref).mean() # EDM loss
337
+ loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss
338
+ else:
339
+ s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device),
340
+ embedding=bert_dur,
341
+ embedding_scale=1,
342
+ embedding_mask_proba=0.1,
343
+ num_steps=num_steps).squeeze(1)
344
+ loss_diff = model.diffusion.module.diffusion(s_trg.unsqueeze(1), embedding=bert_dur).mean() # EDM loss
345
+ loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss
346
+ else:
347
+ loss_sty = 0
348
+ loss_diff = 0
349
+
350
+
351
+ s_loss = 0
352
+
353
+
354
+ d, p = model.predictor(d_en, s_dur,
355
+ input_lengths,
356
+ s2s_attn_mono,
357
+ text_mask)
358
+
359
+ mel_len_st = int(mel_input_length.min().item() / 2 - 1)
360
+ mel_len = min(int(mel_input_length.min().item() / 2 - 1), max_len // 2)
361
+ en = []
362
+ gt = []
363
+ p_en = []
364
+ wav = []
365
+ st = []
366
+
367
+ for bib in range(len(mel_input_length)):
368
+ mel_length = int(mel_input_length[bib].item() / 2)
369
+
370
+ random_start = np.random.randint(0, mel_length - mel_len)
371
+ en.append(asr[bib, :, random_start:random_start+mel_len])
372
+ p_en.append(p[bib, :, random_start:random_start+mel_len])
373
+ gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
374
+
375
+ y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
376
+ wav.append(torch.from_numpy(y).to(device))
377
+
378
+ # style reference (better to be different from the GT)
379
+ random_start = np.random.randint(0, mel_length - mel_len_st)
380
+ st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)])
381
+
382
+ wav = torch.stack(wav).float().detach()
383
+
384
+ en = torch.stack(en)
385
+ p_en = torch.stack(p_en)
386
+ gt = torch.stack(gt).detach()
387
+ st = torch.stack(st).detach()
388
+
389
+
390
+ if gt.size(-1) < 80:
391
+ continue
392
+
393
+ s = model.style_encoder(gt.unsqueeze(1))
394
+ s_dur = model.predictor_encoder(gt.unsqueeze(1))
395
+
396
+ with torch.no_grad():
397
+ F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
398
+ F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze()
399
+
400
+ N_real = log_norm(gt.unsqueeze(1)).squeeze(1)
401
+
402
+ y_rec_gt = wav.unsqueeze(1)
403
+ y_rec_gt_pred = model.decoder(en, F0_real, N_real, s)
404
+
405
+ wav = y_rec_gt
406
+
407
+ F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur)
408
+
409
+ y_rec = model.decoder(en, F0_fake, N_fake, s)
410
+
411
+ loss_F0_rec = (F.smooth_l1_loss(F0_real, F0_fake)) / 10
412
+ loss_norm_rec = F.smooth_l1_loss(N_real, N_fake)
413
+
414
+ optimizer.zero_grad()
415
+ d_loss = dl(wav.detach(), y_rec.detach()).mean()
416
+ accelerator.backward(d_loss)
417
+ optimizer.step('msd')
418
+ optimizer.step('mpd')
419
+
420
+ # generator loss
421
+ optimizer.zero_grad()
422
+
423
+ loss_mel = stft_loss(y_rec, wav)
424
+ loss_gen_all = gl(wav, y_rec).mean()
425
+ loss_lm = wl(wav.detach().squeeze(), y_rec.squeeze()).mean()
426
+
427
+ loss_ce = 0
428
+ loss_dur = 0
429
+ for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
430
+ _s2s_pred = _s2s_pred[:_text_length, :]
431
+ _text_input = _text_input[:_text_length].long()
432
+ _s2s_trg = torch.zeros_like(_s2s_pred)
433
+ for p in range(_s2s_trg.shape[0]):
434
+ _s2s_trg[p, :_text_input[p]] = 1
435
+ _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
436
+
437
+ loss_dur += F.l1_loss(_dur_pred[1:_text_length-1],
438
+ _text_input[1:_text_length-1])
439
+ loss_ce += F.binary_cross_entropy_with_logits(_s2s_pred.flatten(), _s2s_trg.flatten())
440
+
441
+ loss_ce /= texts.size(0)
442
+ loss_dur /= texts.size(0)
443
+
444
+ loss_s2s = 0
445
+ for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths):
446
+ loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length])
447
+ loss_s2s /= texts.size(0)
448
+
449
+ loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10
450
+
451
+ g_loss = loss_params.lambda_mel * loss_mel + \
452
+ loss_params.lambda_F0 * loss_F0_rec + \
453
+ loss_params.lambda_ce * loss_ce + \
454
+ loss_params.lambda_norm * loss_norm_rec + \
455
+ loss_params.lambda_dur * loss_dur + \
456
+ loss_params.lambda_gen * loss_gen_all + \
457
+ loss_params.lambda_slm * loss_lm + \
458
+ loss_params.lambda_sty * loss_sty + \
459
+ loss_params.lambda_diff * loss_diff + \
460
+ loss_params.lambda_mono * loss_mono + \
461
+ loss_params.lambda_s2s * loss_s2s
462
+
463
+ running_loss += loss_mel.item()
464
+ accelerator.backward(g_loss)
465
+ if torch.isnan(g_loss):
466
+ from IPython.core.debugger import set_trace
467
+ set_trace()
468
+
469
+ optimizer.step('bert_encoder')
470
+ optimizer.step('bert')
471
+ optimizer.step('predictor')
472
+ optimizer.step('predictor_encoder')
473
+ optimizer.step('style_encoder')
474
+ optimizer.step('decoder')
475
+
476
+ optimizer.step('text_encoder')
477
+ optimizer.step('text_aligner')
478
+
479
+ if epoch >= diff_epoch:
480
+ optimizer.step('diffusion')
481
+
482
+ d_loss_slm, loss_gen_lm = 0, 0
483
+ if epoch >= joint_epoch:
484
+ # randomly pick whether to use in-distribution text
485
+ if np.random.rand() < 0.5:
486
+ use_ind = True
487
+ else:
488
+ use_ind = False
489
+
490
+ if use_ind:
491
+ ref_lengths = input_lengths
492
+ ref_texts = texts
493
+
494
+ slm_out = slmadv(i,
495
+ y_rec_gt,
496
+ y_rec_gt_pred,
497
+ waves,
498
+ mel_input_length,
499
+ ref_texts,
500
+ ref_lengths, use_ind, s_trg.detach(), ref if multispeaker else None)
501
+
502
+ if slm_out is not None:
503
+ d_loss_slm, loss_gen_lm, y_pred = slm_out
504
+
505
+ # SLM generator loss
506
+ optimizer.zero_grad()
507
+ accelerator.backward(loss_gen_lm)
508
+
509
+ # compute the gradient norm
510
+ total_norm = {}
511
+ for key in model.keys():
512
+ total_norm[key] = 0
513
+ parameters = [p for p in model[key].parameters() if p.grad is not None and p.requires_grad]
514
+ for p in parameters:
515
+ param_norm = p.grad.detach().data.norm(2)
516
+ total_norm[key] += param_norm.item() ** 2
517
+ total_norm[key] = total_norm[key] ** 0.5
518
+
519
+ # gradient scaling
520
+ if total_norm['predictor'] > slmadv_params.thresh:
521
+ for key in model.keys():
522
+ for p in model[key].parameters():
523
+ if p.grad is not None:
524
+ p.grad *= (1 / total_norm['predictor'])
525
+
526
+ for p in model.predictor.duration_proj.parameters():
527
+ if p.grad is not None:
528
+ p.grad *= slmadv_params.scale
529
+
530
+ for p in model.predictor.lstm.parameters():
531
+ if p.grad is not None:
532
+ p.grad *= slmadv_params.scale
533
+
534
+ for p in model.diffusion.parameters():
535
+ if p.grad is not None:
536
+ p.grad *= slmadv_params.scale
537
+
538
+ optimizer.step('bert_encoder')
539
+ optimizer.step('bert')
540
+ optimizer.step('predictor')
541
+ optimizer.step('diffusion')
542
+
543
+ # SLM discriminator loss
544
+ if d_loss_slm != 0:
545
+ optimizer.zero_grad()
546
+ accelerator.backward(d_loss_slm)
547
+ optimizer.step('wd')
548
+
549
+ iters = iters + 1
550
+
551
+ if (i+1)%log_interval == 0:
552
+ logger.info ('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f, SLoss: %.5f, S2S Loss: %.5f, Mono Loss: %.5f'
553
+ %(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, d_loss, loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff, d_loss_slm, loss_gen_lm, s_loss, loss_s2s, loss_mono))
554
+
555
+ writer.add_scalar('train/mel_loss', running_loss / log_interval, iters)
556
+ writer.add_scalar('train/gen_loss', loss_gen_all, iters)
557
+ writer.add_scalar('train/d_loss', d_loss, iters)
558
+ writer.add_scalar('train/ce_loss', loss_ce, iters)
559
+ writer.add_scalar('train/dur_loss', loss_dur, iters)
560
+ writer.add_scalar('train/slm_loss', loss_lm, iters)
561
+ writer.add_scalar('train/norm_loss', loss_norm_rec, iters)
562
+ writer.add_scalar('train/F0_loss', loss_F0_rec, iters)
563
+ writer.add_scalar('train/sty_loss', loss_sty, iters)
564
+ writer.add_scalar('train/diff_loss', loss_diff, iters)
565
+ writer.add_scalar('train/d_loss_slm', d_loss_slm, iters)
566
+ writer.add_scalar('train/gen_loss_slm', loss_gen_lm, iters)
567
+
568
+ running_loss = 0
569
+
570
+ print('Time elasped:', time.time()-start_time)
571
+
572
+ loss_test = 0
573
+ loss_align = 0
574
+ loss_f = 0
575
+ _ = [model[key].eval() for key in model]
576
+
577
+ with torch.no_grad():
578
+ iters_test = 0
579
+ for batch_idx, batch in enumerate(val_dataloader):
580
+ optimizer.zero_grad()
581
+
582
+ try:
583
+ waves = batch[0]
584
+ batch = [b.to(device) for b in batch[1:]]
585
+ texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
586
+ with torch.no_grad():
587
+ mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
588
+ text_mask = length_to_mask(input_lengths).to(texts.device)
589
+
590
+ _, _, s2s_attn = model.text_aligner(mels, mask, texts)
591
+ s2s_attn = s2s_attn.transpose(-1, -2)
592
+ s2s_attn = s2s_attn[..., 1:]
593
+ s2s_attn = s2s_attn.transpose(-1, -2)
594
+
595
+ mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
596
+ s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
597
+
598
+ # encode
599
+ t_en = model.text_encoder(texts, input_lengths, text_mask)
600
+ asr = (t_en @ s2s_attn_mono)
601
+
602
+ d_gt = s2s_attn_mono.sum(axis=-1).detach()
603
+
604
+ ss = []
605
+ gs = []
606
+
607
+ for bib in range(len(mel_input_length)):
608
+ mel_length = int(mel_input_length[bib].item())
609
+ mel = mels[bib, :, :mel_input_length[bib]]
610
+ s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
611
+ ss.append(s)
612
+ s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
613
+ gs.append(s)
614
+
615
+ s = torch.stack(ss).squeeze()
616
+ gs = torch.stack(gs).squeeze()
617
+ s_trg = torch.cat([s, gs], dim=-1).detach()
618
+
619
+ bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
620
+ d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
621
+ d, p = model.predictor(d_en, s,
622
+ input_lengths,
623
+ s2s_attn_mono,
624
+ text_mask)
625
+ # get clips
626
+ mel_len = int(mel_input_length.min().item() / 2 - 1)
627
+ en = []
628
+ gt = []
629
+
630
+ p_en = []
631
+ wav = []
632
+
633
+ for bib in range(len(mel_input_length)):
634
+ mel_length = int(mel_input_length[bib].item() / 2)
635
+
636
+ random_start = np.random.randint(0, mel_length - mel_len)
637
+ en.append(asr[bib, :, random_start:random_start+mel_len])
638
+ p_en.append(p[bib, :, random_start:random_start+mel_len])
639
+
640
+ gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
641
+ y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
642
+ wav.append(torch.from_numpy(y).to(device))
643
+
644
+ wav = torch.stack(wav).float().detach()
645
+
646
+ en = torch.stack(en)
647
+ p_en = torch.stack(p_en)
648
+ gt = torch.stack(gt).detach()
649
+ s = model.predictor_encoder(gt.unsqueeze(1))
650
+
651
+ F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s)
652
+
653
+ loss_dur = 0
654
+ for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
655
+ _s2s_pred = _s2s_pred[:_text_length, :]
656
+ _text_input = _text_input[:_text_length].long()
657
+ _s2s_trg = torch.zeros_like(_s2s_pred)
658
+ for bib in range(_s2s_trg.shape[0]):
659
+ _s2s_trg[bib, :_text_input[bib]] = 1
660
+ _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
661
+ loss_dur += F.l1_loss(_dur_pred[1:_text_length-1],
662
+ _text_input[1:_text_length-1])
663
+
664
+ loss_dur /= texts.size(0)
665
+
666
+ s = model.style_encoder(gt.unsqueeze(1))
667
+
668
+ y_rec = model.decoder(en, F0_fake, N_fake, s)
669
+ loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
670
+
671
+ F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
672
+
673
+ loss_F0 = F.l1_loss(F0_real, F0_fake) / 10
674
+
675
+ loss_test += (loss_mel).mean()
676
+ loss_align += (loss_dur).mean()
677
+ loss_f += (loss_F0).mean()
678
+
679
+ iters_test += 1
680
+ except:
681
+ continue
682
+
683
+ print('Epochs:', epoch + 1)
684
+ logger.info('Validation loss: %.3f, Dur loss: %.3f, F0 loss: %.3f' % (loss_test / iters_test, loss_align / iters_test, loss_f / iters_test) + '\n\n\n')
685
+ print('\n\n\n')
686
+ writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1)
687
+ writer.add_scalar('eval/dur_loss', loss_test / iters_test, epoch + 1)
688
+ writer.add_scalar('eval/F0_loss', loss_f / iters_test, epoch + 1)
689
+
690
+
691
+ if (epoch + 1) % save_freq == 0 :
692
+ if (loss_test / iters_test) < best_loss:
693
+ best_loss = loss_test / iters_test
694
+ print('Saving..')
695
+ state = {
696
+ 'net': {key: model[key].state_dict() for key in model},
697
+ 'optimizer': optimizer.state_dict(),
698
+ 'iters': iters,
699
+ 'val_loss': loss_test / iters_test,
700
+ 'epoch': epoch,
701
+ }
702
+ save_path = osp.join(log_dir, 'epoch_2nd_%05d.pth' % epoch)
703
+ torch.save(state, save_path)
704
+
705
+ # if estimate sigma, save the estimated simga
706
+ if model_params.diffusion.dist.estimate_sigma_data:
707
+ config['model_params']['diffusion']['dist']['sigma_data'] = float(np.mean(running_std))
708
+
709
+ with open(osp.join(log_dir, osp.basename(config_path)), 'w') as outfile:
710
+ yaml.dump(config, outfile, default_flow_style=True)
711
+
712
+
713
+ if __name__=="__main__":
714
+ main()
train_first.py ADDED
@@ -0,0 +1,445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import os.path as osp
3
+ import re
4
+ import sys
5
+ import yaml
6
+ import shutil
7
+ import numpy as np
8
+ import torch
9
+ import click
10
+ import warnings
11
+ warnings.simplefilter('ignore')
12
+
13
+ # load packages
14
+ import random
15
+ import yaml
16
+ from munch import Munch
17
+ import numpy as np
18
+ import torch
19
+ from torch import nn
20
+ import torch.nn.functional as F
21
+ import torchaudio
22
+ import librosa
23
+
24
+ from models import *
25
+ from meldataset import build_dataloader
26
+ from utils import *
27
+ from losses import *
28
+ from optimizers import build_optimizer
29
+ import time
30
+
31
+ from accelerate import Accelerator
32
+ from accelerate.utils import LoggerType
33
+ from accelerate import DistributedDataParallelKwargs
34
+
35
+ from torch.utils.tensorboard import SummaryWriter
36
+
37
+ import logging
38
+ from accelerate.logging import get_logger
39
+ logger = get_logger(__name__, log_level="DEBUG")
40
+
41
+ @click.command()
42
+ @click.option('-p', '--config_path', default='Configs/config.yml', type=str)
43
+ def main(config_path):
44
+ config = yaml.safe_load(open(config_path))
45
+
46
+ log_dir = config['log_dir']
47
+ if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
48
+ shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
49
+ ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
50
+ accelerator = Accelerator(project_dir=log_dir, split_batches=True, kwargs_handlers=[ddp_kwargs])
51
+ if accelerator.is_main_process:
52
+ writer = SummaryWriter(log_dir + "/tensorboard")
53
+
54
+ # write logs
55
+ file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
56
+ file_handler.setLevel(logging.DEBUG)
57
+ file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
58
+ logger.logger.addHandler(file_handler)
59
+
60
+ batch_size = config.get('batch_size', 10)
61
+ device = accelerator.device
62
+
63
+ epochs = config.get('epochs_1st', 200)
64
+ save_freq = config.get('save_freq', 2)
65
+ log_interval = config.get('log_interval', 10)
66
+ saving_epoch = config.get('save_freq', 2)
67
+
68
+ data_params = config.get('data_params', None)
69
+ sr = config['preprocess_params'].get('sr', 24000)
70
+ train_path = data_params['train_data']
71
+ val_path = data_params['val_data']
72
+ root_path = data_params['root_path']
73
+ min_length = data_params['min_length']
74
+ OOD_data = data_params['OOD_data']
75
+
76
+ max_len = config.get('max_len', 200)
77
+
78
+ # load data
79
+ train_list, val_list = get_data_path_list(train_path, val_path)
80
+
81
+ train_dataloader = build_dataloader(train_list,
82
+ root_path,
83
+ OOD_data=OOD_data,
84
+ min_length=min_length,
85
+ batch_size=batch_size,
86
+ num_workers=2,
87
+ dataset_config={},
88
+ device=device)
89
+
90
+ val_dataloader = build_dataloader(val_list,
91
+ root_path,
92
+ OOD_data=OOD_data,
93
+ min_length=min_length,
94
+ batch_size=batch_size,
95
+ validation=True,
96
+ num_workers=0,
97
+ device=device,
98
+ dataset_config={})
99
+
100
+ with accelerator.main_process_first():
101
+ # load pretrained ASR model
102
+ ASR_config = config.get('ASR_config', False)
103
+ ASR_path = config.get('ASR_path', False)
104
+ text_aligner = load_ASR_models(ASR_path, ASR_config)
105
+
106
+ # load pretrained F0 model
107
+ F0_path = config.get('F0_path', False)
108
+ pitch_extractor = load_F0_models(F0_path)
109
+
110
+ # load BERT model
111
+ from Utils.PLBERT.util import load_plbert
112
+ BERT_path = config.get('PLBERT_dir', False)
113
+ plbert = load_plbert(BERT_path)
114
+
115
+ scheduler_params = {
116
+ "max_lr": float(config['optimizer_params'].get('lr', 1e-4)),
117
+ "pct_start": float(config['optimizer_params'].get('pct_start', 0.0)),
118
+ "epochs": epochs,
119
+ "steps_per_epoch": len(train_dataloader),
120
+ }
121
+
122
+ model_params = recursive_munch(config['model_params'])
123
+ multispeaker = model_params.multispeaker
124
+ model = build_model(model_params, text_aligner, pitch_extractor, plbert)
125
+
126
+ best_loss = float('inf') # best test loss
127
+ loss_train_record = list([])
128
+ loss_test_record = list([])
129
+
130
+ loss_params = Munch(config['loss_params'])
131
+ TMA_epoch = loss_params.TMA_epoch
132
+
133
+ for k in model:
134
+ model[k] = accelerator.prepare(model[k])
135
+
136
+ train_dataloader, val_dataloader = accelerator.prepare(
137
+ train_dataloader, val_dataloader
138
+ )
139
+
140
+ _ = [model[key].to(device) for key in model]
141
+
142
+ # initialize optimizers after preparing models for compatibility with FSDP
143
+ optimizer = build_optimizer({key: model[key].parameters() for key in model},
144
+ scheduler_params_dict= {key: scheduler_params.copy() for key in model},
145
+ lr=float(config['optimizer_params'].get('lr', 1e-4)))
146
+
147
+ for k, v in optimizer.optimizers.items():
148
+ optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k])
149
+ optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k])
150
+
151
+ with accelerator.main_process_first():
152
+ if config.get('pretrained_model', '') != '':
153
+ model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'],
154
+ load_only_params=config.get('load_only_params', True))
155
+ else:
156
+ start_epoch = 0
157
+ iters = 0
158
+
159
+ # in case not distributed
160
+ try:
161
+ n_down = model.text_aligner.module.n_down
162
+ except:
163
+ n_down = model.text_aligner.n_down
164
+
165
+ # wrapped losses for compatibility with mixed precision
166
+ stft_loss = MultiResolutionSTFTLoss().to(device)
167
+ gl = GeneratorLoss(model.mpd, model.msd).to(device)
168
+ dl = DiscriminatorLoss(model.mpd, model.msd).to(device)
169
+ wl = WavLMLoss(model_params.slm.model,
170
+ model.wd,
171
+ sr,
172
+ model_params.slm.sr).to(device)
173
+
174
+ for epoch in range(start_epoch, epochs):
175
+ running_loss = 0
176
+ start_time = time.time()
177
+
178
+ _ = [model[key].train() for key in model]
179
+
180
+ for i, batch in enumerate(train_dataloader):
181
+ waves = batch[0]
182
+ batch = [b.to(device) for b in batch[1:]]
183
+ texts, input_lengths, _, _, mels, mel_input_length, _ = batch
184
+
185
+ with torch.no_grad():
186
+ mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
187
+ text_mask = length_to_mask(input_lengths).to(texts.device)
188
+
189
+ ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)
190
+
191
+ s2s_attn = s2s_attn.transpose(-1, -2)
192
+ s2s_attn = s2s_attn[..., 1:]
193
+ s2s_attn = s2s_attn.transpose(-1, -2)
194
+
195
+ with torch.no_grad():
196
+ attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2)
197
+ attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float()
198
+ attn_mask = (attn_mask < 1)
199
+
200
+ s2s_attn.masked_fill_(attn_mask, 0.0)
201
+
202
+ with torch.no_grad():
203
+ mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
204
+ s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
205
+
206
+ # encode
207
+ t_en = model.text_encoder(texts, input_lengths, text_mask)
208
+
209
+ # 50% of chance of using monotonic version
210
+ if bool(random.getrandbits(1)):
211
+ asr = (t_en @ s2s_attn)
212
+ else:
213
+ asr = (t_en @ s2s_attn_mono)
214
+
215
+ # get clips
216
+ mel_input_length_all = accelerator.gather(mel_input_length) # for balanced load
217
+ mel_len = min([int(mel_input_length_all.min().item() / 2 - 1), max_len // 2])
218
+ mel_len_st = int(mel_input_length.min().item() / 2 - 1)
219
+
220
+ en = []
221
+ gt = []
222
+ wav = []
223
+ st = []
224
+
225
+ for bib in range(len(mel_input_length)):
226
+ mel_length = int(mel_input_length[bib].item() / 2)
227
+
228
+ random_start = np.random.randint(0, mel_length - mel_len)
229
+ en.append(asr[bib, :, random_start:random_start+mel_len])
230
+ gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
231
+
232
+ y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
233
+ wav.append(torch.from_numpy(y).to(device))
234
+
235
+ # style reference (better to be different from the GT)
236
+ random_start = np.random.randint(0, mel_length - mel_len_st)
237
+ st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)])
238
+
239
+ en = torch.stack(en)
240
+ gt = torch.stack(gt).detach()
241
+ st = torch.stack(st).detach()
242
+
243
+ wav = torch.stack(wav).float().detach()
244
+
245
+ # clip too short to be used by the style encoder
246
+ if gt.shape[-1] < 80:
247
+ continue
248
+
249
+ with torch.no_grad():
250
+ real_norm = log_norm(gt.unsqueeze(1)).squeeze(1).detach()
251
+ F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
252
+
253
+ s = model.style_encoder(st.unsqueeze(1) if multispeaker else gt.unsqueeze(1))
254
+
255
+ y_rec = model.decoder(en, F0_real, real_norm, s)
256
+
257
+ # discriminator loss
258
+
259
+ if epoch >= TMA_epoch:
260
+ optimizer.zero_grad()
261
+ d_loss = dl(wav.detach().unsqueeze(1).float(), y_rec.detach()).mean()
262
+ accelerator.backward(d_loss)
263
+ optimizer.step('msd')
264
+ optimizer.step('mpd')
265
+ else:
266
+ d_loss = 0
267
+
268
+ # generator loss
269
+ optimizer.zero_grad()
270
+ loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
271
+
272
+ if epoch >= TMA_epoch: # start TMA training
273
+ loss_s2s = 0
274
+ for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths):
275
+ loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length])
276
+ loss_s2s /= texts.size(0)
277
+
278
+ loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10
279
+
280
+ loss_gen_all = gl(wav.detach().unsqueeze(1).float(), y_rec).mean()
281
+ loss_slm = wl(wav.detach(), y_rec).mean()
282
+
283
+ g_loss = loss_params.lambda_mel * loss_mel + \
284
+ loss_params.lambda_mono * loss_mono + \
285
+ loss_params.lambda_s2s * loss_s2s + \
286
+ loss_params.lambda_gen * loss_gen_all + \
287
+ loss_params.lambda_slm * loss_slm
288
+
289
+ else:
290
+ loss_s2s = 0
291
+ loss_mono = 0
292
+ loss_gen_all = 0
293
+ loss_slm = 0
294
+ g_loss = loss_mel
295
+
296
+ running_loss += accelerator.gather(loss_mel).mean().item()
297
+
298
+ accelerator.backward(g_loss)
299
+
300
+ optimizer.step('text_encoder')
301
+ optimizer.step('style_encoder')
302
+ optimizer.step('decoder')
303
+
304
+ if epoch >= TMA_epoch:
305
+ optimizer.step('text_aligner')
306
+ optimizer.step('pitch_extractor')
307
+
308
+ iters = iters + 1
309
+
310
+ if (i+1)%log_interval == 0 and accelerator.is_main_process:
311
+ log_print ('Epoch [%d/%d], Step [%d/%d], Mel Loss: %.5f, Gen Loss: %.5f, Disc Loss: %.5f, Mono Loss: %.5f, S2S Loss: %.5f, SLM Loss: %.5f'
312
+ %(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, loss_gen_all, d_loss, loss_mono, loss_s2s, loss_slm), logger)
313
+
314
+ writer.add_scalar('train/mel_loss', running_loss / log_interval, iters)
315
+ writer.add_scalar('train/gen_loss', loss_gen_all, iters)
316
+ writer.add_scalar('train/d_loss', d_loss, iters)
317
+ writer.add_scalar('train/mono_loss', loss_mono, iters)
318
+ writer.add_scalar('train/s2s_loss', loss_s2s, iters)
319
+ writer.add_scalar('train/slm_loss', loss_slm, iters)
320
+
321
+ running_loss = 0
322
+
323
+ print('Time elasped:', time.time()-start_time)
324
+
325
+ loss_test = 0
326
+
327
+ _ = [model[key].eval() for key in model]
328
+
329
+ with torch.no_grad():
330
+ iters_test = 0
331
+ for batch_idx, batch in enumerate(val_dataloader):
332
+ optimizer.zero_grad()
333
+
334
+ waves = batch[0]
335
+ batch = [b.to(device) for b in batch[1:]]
336
+ texts, input_lengths, _, _, mels, mel_input_length, _ = batch
337
+
338
+ with torch.no_grad():
339
+ mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
340
+ ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)
341
+
342
+ s2s_attn = s2s_attn.transpose(-1, -2)
343
+ s2s_attn = s2s_attn[..., 1:]
344
+ s2s_attn = s2s_attn.transpose(-1, -2)
345
+
346
+ text_mask = length_to_mask(input_lengths).to(texts.device)
347
+ attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2)
348
+ attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float()
349
+ attn_mask = (attn_mask < 1)
350
+ s2s_attn.masked_fill_(attn_mask, 0.0)
351
+
352
+ # encode
353
+ t_en = model.text_encoder(texts, input_lengths, text_mask)
354
+
355
+ asr = (t_en @ s2s_attn)
356
+
357
+ # get clips
358
+ mel_input_length_all = accelerator.gather(mel_input_length) # for balanced load
359
+ mel_len = min([int(mel_input_length.min().item() / 2 - 1), max_len // 2])
360
+
361
+ en = []
362
+ gt = []
363
+ wav = []
364
+ for bib in range(len(mel_input_length)):
365
+ mel_length = int(mel_input_length[bib].item() / 2)
366
+
367
+ random_start = np.random.randint(0, mel_length - mel_len)
368
+ en.append(asr[bib, :, random_start:random_start+mel_len])
369
+ gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
370
+ y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
371
+ wav.append(torch.from_numpy(y).to('cuda'))
372
+
373
+ wav = torch.stack(wav).float().detach()
374
+
375
+ en = torch.stack(en)
376
+ gt = torch.stack(gt).detach()
377
+
378
+ F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
379
+ s = model.style_encoder(gt.unsqueeze(1))
380
+ real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
381
+ y_rec = model.decoder(en, F0_real, real_norm, s)
382
+
383
+ loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
384
+
385
+ loss_test += accelerator.gather(loss_mel).mean().item()
386
+ iters_test += 1
387
+
388
+ if accelerator.is_main_process:
389
+ print('Epochs:', epoch + 1)
390
+ log_print('Validation loss: %.3f' % (loss_test / iters_test) + '\n\n\n\n', logger)
391
+ print('\n\n\n')
392
+ writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1)
393
+ attn_image = get_image(s2s_attn[0].cpu().numpy().squeeze())
394
+ writer.add_figure('eval/attn', attn_image, epoch)
395
+
396
+ with torch.no_grad():
397
+ for bib in range(len(asr)):
398
+ mel_length = int(mel_input_length[bib].item())
399
+ gt = mels[bib, :, :mel_length].unsqueeze(0)
400
+ en = asr[bib, :, :mel_length // 2].unsqueeze(0)
401
+
402
+ F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
403
+ F0_real = F0_real.unsqueeze(0)
404
+ s = model.style_encoder(gt.unsqueeze(1))
405
+ real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
406
+
407
+ y_rec = model.decoder(en, F0_real, real_norm, s)
408
+
409
+ writer.add_audio('eval/y' + str(bib), y_rec.cpu().numpy().squeeze(), epoch, sample_rate=sr)
410
+ if epoch == 0:
411
+ writer.add_audio('gt/y' + str(bib), waves[bib].squeeze(), epoch, sample_rate=sr)
412
+
413
+ if bib >= 6:
414
+ break
415
+
416
+ if epoch % saving_epoch == 0:
417
+ if (loss_test / iters_test) < best_loss:
418
+ best_loss = loss_test / iters_test
419
+ print('Saving..')
420
+ state = {
421
+ 'net': {key: model[key].state_dict() for key in model},
422
+ 'optimizer': optimizer.state_dict(),
423
+ 'iters': iters,
424
+ 'val_loss': loss_test / iters_test,
425
+ 'epoch': epoch,
426
+ }
427
+ save_path = osp.join(log_dir, 'epoch_1st_%05d.pth' % epoch)
428
+ torch.save(state, save_path)
429
+
430
+ if accelerator.is_main_process:
431
+ print('Saving..')
432
+ state = {
433
+ 'net': {key: model[key].state_dict() for key in model},
434
+ 'optimizer': optimizer.state_dict(),
435
+ 'iters': iters,
436
+ 'val_loss': loss_test / iters_test,
437
+ 'epoch': epoch,
438
+ }
439
+ save_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth'))
440
+ torch.save(state, save_path)
441
+
442
+
443
+
444
+ if __name__=="__main__":
445
+ main()
train_second.py ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # load packages
2
+ import random
3
+ import yaml
4
+ import time
5
+ from munch import Munch
6
+ import numpy as np
7
+ import torch
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ import torchaudio
11
+ import librosa
12
+ import click
13
+ import shutil
14
+ import traceback
15
+ import warnings
16
+ warnings.simplefilter('ignore')
17
+ from torch.utils.tensorboard import SummaryWriter
18
+
19
+ from meldataset import build_dataloader
20
+
21
+ from Utils.ASR.models import ASRCNN
22
+ from Utils.JDC.model import JDCNet
23
+ from Utils.PLBERT.util import load_plbert
24
+
25
+ from models import *
26
+ from losses import *
27
+ from utils import *
28
+
29
+ from Modules.slmadv import SLMAdversarialLoss
30
+ from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
31
+
32
+ from optimizers import build_optimizer
33
+
34
+ # simple fix for dataparallel that allows access to class attributes
35
+ class MyDataParallel(torch.nn.DataParallel):
36
+ def __getattr__(self, name):
37
+ try:
38
+ return super().__getattr__(name)
39
+ except AttributeError:
40
+ return getattr(self.module, name)
41
+
42
+ import logging
43
+ from logging import StreamHandler
44
+ logger = logging.getLogger(__name__)
45
+ logger.setLevel(logging.DEBUG)
46
+ handler = StreamHandler()
47
+ handler.setLevel(logging.DEBUG)
48
+ logger.addHandler(handler)
49
+
50
+
51
+ @click.command()
52
+ @click.option('-p', '--config_path', default='Configs/config.yml', type=str)
53
+ def main(config_path):
54
+ config = yaml.safe_load(open(config_path))
55
+
56
+ log_dir = config['log_dir']
57
+ if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
58
+ shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
59
+ writer = SummaryWriter(log_dir + "/tensorboard")
60
+
61
+ # write logs
62
+ file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
63
+ file_handler.setLevel(logging.DEBUG)
64
+ file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
65
+ logger.addHandler(file_handler)
66
+
67
+
68
+ batch_size = config.get('batch_size', 10)
69
+
70
+ epochs = config.get('epochs_2nd', 200)
71
+ save_freq = config.get('save_freq', 2)
72
+ log_interval = config.get('log_interval', 10)
73
+ saving_epoch = config.get('save_freq', 2)
74
+
75
+ data_params = config.get('data_params', None)
76
+ sr = config['preprocess_params'].get('sr', 24000)
77
+ train_path = data_params['train_data']
78
+ val_path = data_params['val_data']
79
+ root_path = data_params['root_path']
80
+ min_length = data_params['min_length']
81
+ OOD_data = data_params['OOD_data']
82
+
83
+ max_len = config.get('max_len', 200)
84
+
85
+ loss_params = Munch(config['loss_params'])
86
+ diff_epoch = loss_params.diff_epoch
87
+ joint_epoch = loss_params.joint_epoch
88
+
89
+ optimizer_params = Munch(config['optimizer_params'])
90
+
91
+ train_list, val_list = get_data_path_list(train_path, val_path)
92
+ device = 'cuda'
93
+
94
+ train_dataloader = build_dataloader(train_list,
95
+ root_path,
96
+ OOD_data=OOD_data,
97
+ min_length=min_length,
98
+ batch_size=batch_size,
99
+ num_workers=2,
100
+ dataset_config={},
101
+ device=device)
102
+
103
+ val_dataloader = build_dataloader(val_list,
104
+ root_path,
105
+ OOD_data=OOD_data,
106
+ min_length=min_length,
107
+ batch_size=batch_size,
108
+ validation=True,
109
+ num_workers=0,
110
+ device=device,
111
+ dataset_config={})
112
+
113
+ # load pretrained ASR model
114
+ ASR_config = config.get('ASR_config', False)
115
+ ASR_path = config.get('ASR_path', False)
116
+ text_aligner = load_ASR_models(ASR_path, ASR_config)
117
+
118
+ # load pretrained F0 model
119
+ F0_path = config.get('F0_path', False)
120
+ pitch_extractor = load_F0_models(F0_path)
121
+
122
+ # load PL-BERT model
123
+ BERT_path = config.get('PLBERT_dir', False)
124
+ plbert = load_plbert(BERT_path)
125
+
126
+ # build model
127
+ model_params = recursive_munch(config['model_params'])
128
+ multispeaker = model_params.multispeaker
129
+ model = build_model(model_params, text_aligner, pitch_extractor, plbert)
130
+ _ = [model[key].to(device) for key in model]
131
+
132
+ # DP
133
+ for key in model:
134
+ if key != "mpd" and key != "msd" and key != "wd":
135
+ model[key] = MyDataParallel(model[key])
136
+
137
+ start_epoch = 0
138
+ iters = 0
139
+
140
+ load_pretrained = config.get('pretrained_model', '') != '' and config.get('second_stage_load_pretrained', False)
141
+
142
+ if not load_pretrained:
143
+ if config.get('first_stage_path', '') != '':
144
+ first_stage_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth'))
145
+ print('Loading the first stage model at %s ...' % first_stage_path)
146
+ model, _, start_epoch, iters = load_checkpoint(model,
147
+ None,
148
+ first_stage_path,
149
+ load_only_params=True,
150
+ ignore_modules=['bert', 'bert_encoder', 'predictor', 'predictor_encoder', 'msd', 'mpd', 'wd', 'diffusion']) # keep starting epoch for tensorboard log
151
+
152
+ # these epochs should be counted from the start epoch
153
+ diff_epoch += start_epoch
154
+ joint_epoch += start_epoch
155
+ epochs += start_epoch
156
+
157
+ model.predictor_encoder = copy.deepcopy(model.style_encoder)
158
+ else:
159
+ raise ValueError('You need to specify the path to the first stage model.')
160
+
161
+ gl = GeneratorLoss(model.mpd, model.msd).to(device)
162
+ dl = DiscriminatorLoss(model.mpd, model.msd).to(device)
163
+ wl = WavLMLoss(model_params.slm.model,
164
+ model.wd,
165
+ sr,
166
+ model_params.slm.sr).to(device)
167
+
168
+ gl = MyDataParallel(gl)
169
+ dl = MyDataParallel(dl)
170
+ wl = MyDataParallel(wl)
171
+
172
+ sampler = DiffusionSampler(
173
+ model.diffusion.diffusion,
174
+ sampler=ADPM2Sampler(),
175
+ sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
176
+ clamp=False
177
+ )
178
+
179
+ scheduler_params = {
180
+ "max_lr": optimizer_params.lr,
181
+ "pct_start": float(0),
182
+ "epochs": epochs,
183
+ "steps_per_epoch": len(train_dataloader),
184
+ }
185
+ scheduler_params_dict= {key: scheduler_params.copy() for key in model}
186
+ scheduler_params_dict['bert']['max_lr'] = optimizer_params.bert_lr * 2
187
+ scheduler_params_dict['decoder']['max_lr'] = optimizer_params.ft_lr * 2
188
+ scheduler_params_dict['style_encoder']['max_lr'] = optimizer_params.ft_lr * 2
189
+
190
+ optimizer = build_optimizer({key: model[key].parameters() for key in model},
191
+ scheduler_params_dict=scheduler_params_dict, lr=optimizer_params.lr)
192
+
193
+ # adjust BERT learning rate
194
+ for g in optimizer.optimizers['bert'].param_groups:
195
+ g['betas'] = (0.9, 0.99)
196
+ g['lr'] = optimizer_params.bert_lr
197
+ g['initial_lr'] = optimizer_params.bert_lr
198
+ g['min_lr'] = 0
199
+ g['weight_decay'] = 0.01
200
+
201
+ # adjust acoustic module learning rate
202
+ for module in ["decoder", "style_encoder"]:
203
+ for g in optimizer.optimizers[module].param_groups:
204
+ g['betas'] = (0.0, 0.99)
205
+ g['lr'] = optimizer_params.ft_lr
206
+ g['initial_lr'] = optimizer_params.ft_lr
207
+ g['min_lr'] = 0
208
+ g['weight_decay'] = 1e-4
209
+
210
+ # load models if there is a model
211
+ if load_pretrained:
212
+ model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'],
213
+ load_only_params=config.get('load_only_params', True))
214
+
215
+ n_down = model.text_aligner.n_down
216
+
217
+ best_loss = float('inf') # best test loss
218
+ loss_train_record = list([])
219
+ loss_test_record = list([])
220
+ iters = 0
221
+
222
+ criterion = nn.L1Loss() # F0 loss (regression)
223
+ torch.cuda.empty_cache()
224
+
225
+ stft_loss = MultiResolutionSTFTLoss().to(device)
226
+
227
+ print('BERT', optimizer.optimizers['bert'])
228
+ print('decoder', optimizer.optimizers['decoder'])
229
+
230
+ start_ds = False
231
+
232
+ running_std = []
233
+
234
+ slmadv_params = Munch(config['slmadv_params'])
235
+ slmadv = SLMAdversarialLoss(model, wl, sampler,
236
+ slmadv_params.min_len,
237
+ slmadv_params.max_len,
238
+ batch_percentage=slmadv_params.batch_percentage,
239
+ skip_update=slmadv_params.iter,
240
+ sig=slmadv_params.sig
241
+ )
242
+
243
+
244
+ for epoch in range(start_epoch, epochs):
245
+ running_loss = 0
246
+ start_time = time.time()
247
+
248
+ _ = [model[key].eval() for key in model]
249
+
250
+ model.predictor.train()
251
+ model.bert_encoder.train()
252
+ model.bert.train()
253
+ model.msd.train()
254
+ model.mpd.train()
255
+
256
+
257
+ if epoch >= diff_epoch:
258
+ start_ds = True
259
+
260
+ for i, batch in enumerate(train_dataloader):
261
+ waves = batch[0]
262
+ batch = [b.to(device) for b in batch[1:]]
263
+ texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
264
+
265
+ with torch.no_grad():
266
+ mask = length_to_mask(mel_input_length // (2 ** n_down)).to(device)
267
+ mel_mask = length_to_mask(mel_input_length).to(device)
268
+ text_mask = length_to_mask(input_lengths).to(texts.device)
269
+
270
+ try:
271
+ _, _, s2s_attn = model.text_aligner(mels, mask, texts)
272
+ s2s_attn = s2s_attn.transpose(-1, -2)
273
+ s2s_attn = s2s_attn[..., 1:]
274
+ s2s_attn = s2s_attn.transpose(-1, -2)
275
+ except:
276
+ continue
277
+
278
+ mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
279
+ s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
280
+
281
+ # encode
282
+ t_en = model.text_encoder(texts, input_lengths, text_mask)
283
+ asr = (t_en @ s2s_attn_mono)
284
+
285
+ d_gt = s2s_attn_mono.sum(axis=-1).detach()
286
+
287
+ # compute reference styles
288
+ if multispeaker and epoch >= diff_epoch:
289
+ ref_ss = model.style_encoder(ref_mels.unsqueeze(1))
290
+ ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1))
291
+ ref = torch.cat([ref_ss, ref_sp], dim=1)
292
+
293
+ # compute the style of the entire utterance
294
+ # this operation cannot be done in batch because of the avgpool layer (may need to work on masked avgpool)
295
+ ss = []
296
+ gs = []
297
+ for bib in range(len(mel_input_length)):
298
+ mel_length = int(mel_input_length[bib].item())
299
+ mel = mels[bib, :, :mel_input_length[bib]]
300
+ s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
301
+ ss.append(s)
302
+ s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
303
+ gs.append(s)
304
+
305
+ s_dur = torch.stack(ss).squeeze() # global prosodic styles
306
+ gs = torch.stack(gs).squeeze() # global acoustic styles
307
+ s_trg = torch.cat([gs, s_dur], dim=-1).detach() # ground truth for denoiser
308
+
309
+ bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
310
+ d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
311
+
312
+ # denoiser training
313
+ if epoch >= diff_epoch:
314
+ num_steps = np.random.randint(3, 5)
315
+
316
+ if model_params.diffusion.dist.estimate_sigma_data:
317
+ model.diffusion.module.diffusion.sigma_data = s_trg.std(axis=-1).mean().item() # batch-wise std estimation
318
+ running_std.append(model.diffusion.module.diffusion.sigma_data)
319
+
320
+ if multispeaker:
321
+ s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device),
322
+ embedding=bert_dur,
323
+ embedding_scale=1,
324
+ features=ref, # reference from the same speaker as the embedding
325
+ embedding_mask_proba=0.1,
326
+ num_steps=num_steps).squeeze(1)
327
+ loss_diff = model.diffusion(s_trg.unsqueeze(1), embedding=bert_dur, features=ref).mean() # EDM loss
328
+ loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss
329
+ else:
330
+ s_preds = sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(device),
331
+ embedding=bert_dur,
332
+ embedding_scale=1,
333
+ embedding_mask_proba=0.1,
334
+ num_steps=num_steps).squeeze(1)
335
+ loss_diff = model.diffusion.module.diffusion(s_trg.unsqueeze(1), embedding=bert_dur).mean() # EDM loss
336
+ loss_sty = F.l1_loss(s_preds, s_trg.detach()) # style reconstruction loss
337
+ else:
338
+ loss_sty = 0
339
+ loss_diff = 0
340
+
341
+ d, p = model.predictor(d_en, s_dur,
342
+ input_lengths,
343
+ s2s_attn_mono,
344
+ text_mask)
345
+
346
+ mel_len = min(int(mel_input_length.min().item() / 2 - 1), max_len // 2)
347
+ mel_len_st = int(mel_input_length.min().item() / 2 - 1)
348
+ en = []
349
+ gt = []
350
+ st = []
351
+ p_en = []
352
+ wav = []
353
+
354
+ for bib in range(len(mel_input_length)):
355
+ mel_length = int(mel_input_length[bib].item() / 2)
356
+
357
+ random_start = np.random.randint(0, mel_length - mel_len)
358
+ en.append(asr[bib, :, random_start:random_start+mel_len])
359
+ p_en.append(p[bib, :, random_start:random_start+mel_len])
360
+ gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
361
+
362
+ y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
363
+ wav.append(torch.from_numpy(y).to(device))
364
+
365
+ # style reference (better to be different from the GT)
366
+ random_start = np.random.randint(0, mel_length - mel_len_st)
367
+ st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)])
368
+
369
+ wav = torch.stack(wav).float().detach()
370
+
371
+ en = torch.stack(en)
372
+ p_en = torch.stack(p_en)
373
+ gt = torch.stack(gt).detach()
374
+ st = torch.stack(st).detach()
375
+
376
+ if gt.size(-1) < 80:
377
+ continue
378
+
379
+ s_dur = model.predictor_encoder(st.unsqueeze(1) if multispeaker else gt.unsqueeze(1))
380
+ s = model.style_encoder(st.unsqueeze(1) if multispeaker else gt.unsqueeze(1))
381
+
382
+ with torch.no_grad():
383
+ F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
384
+ F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze()
385
+
386
+ asr_real = model.text_aligner.get_feature(gt)
387
+
388
+ N_real = log_norm(gt.unsqueeze(1)).squeeze(1)
389
+
390
+ y_rec_gt = wav.unsqueeze(1)
391
+ y_rec_gt_pred = model.decoder(en, F0_real, N_real, s)
392
+
393
+ if epoch >= joint_epoch:
394
+ # ground truth from recording
395
+ wav = y_rec_gt # use recording since decoder is tuned
396
+ else:
397
+ # ground truth from reconstruction
398
+ wav = y_rec_gt_pred # use reconstruction since decoder is fixed
399
+
400
+ F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur)
401
+
402
+ y_rec = model.decoder(en, F0_fake, N_fake, s)
403
+
404
+ loss_F0_rec = (F.smooth_l1_loss(F0_real, F0_fake)) / 10
405
+ loss_norm_rec = F.smooth_l1_loss(N_real, N_fake)
406
+
407
+ if start_ds:
408
+ optimizer.zero_grad()
409
+ d_loss = dl(wav.detach(), y_rec.detach()).mean()
410
+ d_loss.backward()
411
+ optimizer.step('msd')
412
+ optimizer.step('mpd')
413
+ else:
414
+ d_loss = 0
415
+
416
+ # generator loss
417
+ optimizer.zero_grad()
418
+
419
+ loss_mel = stft_loss(y_rec, wav)
420
+ if start_ds:
421
+ loss_gen_all = gl(wav, y_rec).mean()
422
+ else:
423
+ loss_gen_all = 0
424
+ loss_lm = wl(wav.detach().squeeze(), y_rec.squeeze()).mean()
425
+
426
+ loss_ce = 0
427
+ loss_dur = 0
428
+ for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
429
+ _s2s_pred = _s2s_pred[:_text_length, :]
430
+ _text_input = _text_input[:_text_length].long()
431
+ _s2s_trg = torch.zeros_like(_s2s_pred)
432
+ for p in range(_s2s_trg.shape[0]):
433
+ _s2s_trg[p, :_text_input[p]] = 1
434
+ _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
435
+
436
+ loss_dur += F.l1_loss(_dur_pred[1:_text_length-1],
437
+ _text_input[1:_text_length-1])
438
+ loss_ce += F.binary_cross_entropy_with_logits(_s2s_pred.flatten(), _s2s_trg.flatten())
439
+
440
+ loss_ce /= texts.size(0)
441
+ loss_dur /= texts.size(0)
442
+
443
+ g_loss = loss_params.lambda_mel * loss_mel + \
444
+ loss_params.lambda_F0 * loss_F0_rec + \
445
+ loss_params.lambda_ce * loss_ce + \
446
+ loss_params.lambda_norm * loss_norm_rec + \
447
+ loss_params.lambda_dur * loss_dur + \
448
+ loss_params.lambda_gen * loss_gen_all + \
449
+ loss_params.lambda_slm * loss_lm + \
450
+ loss_params.lambda_sty * loss_sty + \
451
+ loss_params.lambda_diff * loss_diff
452
+
453
+ running_loss += loss_mel.item()
454
+ g_loss.backward()
455
+ if torch.isnan(g_loss):
456
+ from IPython.core.debugger import set_trace
457
+ set_trace()
458
+
459
+ optimizer.step('bert_encoder')
460
+ optimizer.step('bert')
461
+ optimizer.step('predictor')
462
+ optimizer.step('predictor_encoder')
463
+
464
+ if epoch >= diff_epoch:
465
+ optimizer.step('diffusion')
466
+
467
+ if epoch >= joint_epoch:
468
+ optimizer.step('style_encoder')
469
+ optimizer.step('decoder')
470
+
471
+ # randomly pick whether to use in-distribution text
472
+ if np.random.rand() < 0.5:
473
+ use_ind = True
474
+ else:
475
+ use_ind = False
476
+
477
+ if use_ind:
478
+ ref_lengths = input_lengths
479
+ ref_texts = texts
480
+
481
+ slm_out = slmadv(i,
482
+ y_rec_gt,
483
+ y_rec_gt_pred,
484
+ waves,
485
+ mel_input_length,
486
+ ref_texts,
487
+ ref_lengths, use_ind, s_trg.detach(), ref if multispeaker else None)
488
+
489
+ if slm_out is None:
490
+ continue
491
+
492
+ d_loss_slm, loss_gen_lm, y_pred = slm_out
493
+
494
+ # SLM generator loss
495
+ optimizer.zero_grad()
496
+ loss_gen_lm.backward()
497
+
498
+ # compute the gradient norm
499
+ total_norm = {}
500
+ for key in model.keys():
501
+ total_norm[key] = 0
502
+ parameters = [p for p in model[key].parameters() if p.grad is not None and p.requires_grad]
503
+ for p in parameters:
504
+ param_norm = p.grad.detach().data.norm(2)
505
+ total_norm[key] += param_norm.item() ** 2
506
+ total_norm[key] = total_norm[key] ** 0.5
507
+
508
+ # gradient scaling
509
+ if total_norm['predictor'] > slmadv_params.thresh:
510
+ for key in model.keys():
511
+ for p in model[key].parameters():
512
+ if p.grad is not None:
513
+ p.grad *= (1 / total_norm['predictor'])
514
+
515
+ for p in model.predictor.duration_proj.parameters():
516
+ if p.grad is not None:
517
+ p.grad *= slmadv_params.scale
518
+
519
+ for p in model.predictor.lstm.parameters():
520
+ if p.grad is not None:
521
+ p.grad *= slmadv_params.scale
522
+
523
+ for p in model.diffusion.parameters():
524
+ if p.grad is not None:
525
+ p.grad *= slmadv_params.scale
526
+
527
+ optimizer.step('bert_encoder')
528
+ optimizer.step('bert')
529
+ optimizer.step('predictor')
530
+ optimizer.step('diffusion')
531
+
532
+ # SLM discriminator loss
533
+ if d_loss_slm != 0:
534
+ optimizer.zero_grad()
535
+ d_loss_slm.backward(retain_graph=True)
536
+ optimizer.step('wd')
537
+
538
+ else:
539
+ d_loss_slm, loss_gen_lm = 0, 0
540
+
541
+ iters = iters + 1
542
+
543
+ if (i+1)%log_interval == 0:
544
+ logger.info ('Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f'
545
+ %(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, d_loss, loss_dur, loss_ce, loss_norm_rec, loss_F0_rec, loss_lm, loss_gen_all, loss_sty, loss_diff, d_loss_slm, loss_gen_lm))
546
+
547
+ writer.add_scalar('train/mel_loss', running_loss / log_interval, iters)
548
+ writer.add_scalar('train/gen_loss', loss_gen_all, iters)
549
+ writer.add_scalar('train/d_loss', d_loss, iters)
550
+ writer.add_scalar('train/ce_loss', loss_ce, iters)
551
+ writer.add_scalar('train/dur_loss', loss_dur, iters)
552
+ writer.add_scalar('train/slm_loss', loss_lm, iters)
553
+ writer.add_scalar('train/norm_loss', loss_norm_rec, iters)
554
+ writer.add_scalar('train/F0_loss', loss_F0_rec, iters)
555
+ writer.add_scalar('train/sty_loss', loss_sty, iters)
556
+ writer.add_scalar('train/diff_loss', loss_diff, iters)
557
+ writer.add_scalar('train/d_loss_slm', d_loss_slm, iters)
558
+ writer.add_scalar('train/gen_loss_slm', loss_gen_lm, iters)
559
+
560
+ running_loss = 0
561
+
562
+ print('Time elasped:', time.time()-start_time)
563
+
564
+ loss_test = 0
565
+ loss_align = 0
566
+ loss_f = 0
567
+ _ = [model[key].eval() for key in model]
568
+
569
+ with torch.no_grad():
570
+ iters_test = 0
571
+ for batch_idx, batch in enumerate(val_dataloader):
572
+ optimizer.zero_grad()
573
+
574
+ try:
575
+ waves = batch[0]
576
+ batch = [b.to(device) for b in batch[1:]]
577
+ texts, input_lengths, ref_texts, ref_lengths, mels, mel_input_length, ref_mels = batch
578
+ with torch.no_grad():
579
+ mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
580
+ text_mask = length_to_mask(input_lengths).to(texts.device)
581
+
582
+ _, _, s2s_attn = model.text_aligner(mels, mask, texts)
583
+ s2s_attn = s2s_attn.transpose(-1, -2)
584
+ s2s_attn = s2s_attn[..., 1:]
585
+ s2s_attn = s2s_attn.transpose(-1, -2)
586
+
587
+ mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
588
+ s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
589
+
590
+ # encode
591
+ t_en = model.text_encoder(texts, input_lengths, text_mask)
592
+ asr = (t_en @ s2s_attn_mono)
593
+
594
+ d_gt = s2s_attn_mono.sum(axis=-1).detach()
595
+
596
+ ss = []
597
+ gs = []
598
+
599
+ for bib in range(len(mel_input_length)):
600
+ mel_length = int(mel_input_length[bib].item())
601
+ mel = mels[bib, :, :mel_input_length[bib]]
602
+ s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1))
603
+ ss.append(s)
604
+ s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1))
605
+ gs.append(s)
606
+
607
+ s = torch.stack(ss).squeeze()
608
+ gs = torch.stack(gs).squeeze()
609
+ s_trg = torch.cat([s, gs], dim=-1).detach()
610
+
611
+ bert_dur = model.bert(texts, attention_mask=(~text_mask).int())
612
+ d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
613
+ d, p = model.predictor(d_en, s,
614
+ input_lengths,
615
+ s2s_attn_mono,
616
+ text_mask)
617
+ # get clips
618
+ mel_len = int(mel_input_length.min().item() / 2 - 1)
619
+ en = []
620
+ gt = []
621
+ p_en = []
622
+ wav = []
623
+
624
+ for bib in range(len(mel_input_length)):
625
+ mel_length = int(mel_input_length[bib].item() / 2)
626
+
627
+ random_start = np.random.randint(0, mel_length - mel_len)
628
+ en.append(asr[bib, :, random_start:random_start+mel_len])
629
+ p_en.append(p[bib, :, random_start:random_start+mel_len])
630
+
631
+ gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
632
+
633
+ y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
634
+ wav.append(torch.from_numpy(y).to(device))
635
+
636
+ wav = torch.stack(wav).float().detach()
637
+
638
+ en = torch.stack(en)
639
+ p_en = torch.stack(p_en)
640
+ gt = torch.stack(gt).detach()
641
+
642
+ s = model.predictor_encoder(gt.unsqueeze(1))
643
+
644
+ F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s)
645
+
646
+ loss_dur = 0
647
+ for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths):
648
+ _s2s_pred = _s2s_pred[:_text_length, :]
649
+ _text_input = _text_input[:_text_length].long()
650
+ _s2s_trg = torch.zeros_like(_s2s_pred)
651
+ for bib in range(_s2s_trg.shape[0]):
652
+ _s2s_trg[bib, :_text_input[bib]] = 1
653
+ _dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1)
654
+ loss_dur += F.l1_loss(_dur_pred[1:_text_length-1],
655
+ _text_input[1:_text_length-1])
656
+
657
+ loss_dur /= texts.size(0)
658
+
659
+ s = model.style_encoder(gt.unsqueeze(1))
660
+
661
+ y_rec = model.decoder(en, F0_fake, N_fake, s)
662
+ loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
663
+
664
+ F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
665
+
666
+ loss_F0 = F.l1_loss(F0_real, F0_fake) / 10
667
+
668
+ loss_test += (loss_mel).mean()
669
+ loss_align += (loss_dur).mean()
670
+ loss_f += (loss_F0).mean()
671
+
672
+ iters_test += 1
673
+ except Exception as e:
674
+ print(f"run into exception", e)
675
+ traceback.print_exc()
676
+ continue
677
+
678
+ print('Epochs:', epoch + 1)
679
+ logger.info('Validation loss: %.3f, Dur loss: %.3f, F0 loss: %.3f' % (loss_test / iters_test, loss_align / iters_test, loss_f / iters_test) + '\n\n\n')
680
+ print('\n\n\n')
681
+ writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1)
682
+ writer.add_scalar('eval/dur_loss', loss_align / iters_test, epoch + 1)
683
+ writer.add_scalar('eval/F0_loss', loss_f / iters_test, epoch + 1)
684
+
685
+ if epoch < joint_epoch:
686
+ # generating reconstruction examples with GT duration
687
+
688
+ with torch.no_grad():
689
+ for bib in range(len(asr)):
690
+ mel_length = int(mel_input_length[bib].item())
691
+ gt = mels[bib, :, :mel_length].unsqueeze(0)
692
+ en = asr[bib, :, :mel_length // 2].unsqueeze(0)
693
+
694
+ F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
695
+ F0_real = F0_real.unsqueeze(0)
696
+ s = model.style_encoder(gt.unsqueeze(1))
697
+ real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
698
+
699
+ y_rec = model.decoder(en, F0_real, real_norm, s)
700
+
701
+ writer.add_audio('eval/y' + str(bib), y_rec.cpu().numpy().squeeze(), epoch, sample_rate=sr)
702
+
703
+ s_dur = model.predictor_encoder(gt.unsqueeze(1))
704
+ p_en = p[bib, :, :mel_length // 2].unsqueeze(0)
705
+
706
+ F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur)
707
+
708
+ y_pred = model.decoder(en, F0_fake, N_fake, s)
709
+
710
+ writer.add_audio('pred/y' + str(bib), y_pred.cpu().numpy().squeeze(), epoch, sample_rate=sr)
711
+
712
+ if epoch == 0:
713
+ writer.add_audio('gt/y' + str(bib), waves[bib].squeeze(), epoch, sample_rate=sr)
714
+
715
+ if bib >= 5:
716
+ break
717
+ else:
718
+ # generating sampled speech from text directly
719
+ with torch.no_grad():
720
+ # compute reference styles
721
+ if multispeaker and epoch >= diff_epoch:
722
+ ref_ss = model.style_encoder(ref_mels.unsqueeze(1))
723
+ ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1))
724
+ ref_s = torch.cat([ref_ss, ref_sp], dim=1)
725
+
726
+ for bib in range(len(d_en)):
727
+ if multispeaker:
728
+ s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(texts.device),
729
+ embedding=bert_dur[bib].unsqueeze(0),
730
+ embedding_scale=1,
731
+ features=ref_s[bib].unsqueeze(0), # reference from the same speaker as the embedding
732
+ num_steps=5).squeeze(1)
733
+ else:
734
+ s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(texts.device),
735
+ embedding=bert_dur[bib].unsqueeze(0),
736
+ embedding_scale=1,
737
+ num_steps=5).squeeze(1)
738
+
739
+ s = s_pred[:, 128:]
740
+ ref = s_pred[:, :128]
741
+
742
+ d = model.predictor.text_encoder(d_en[bib, :, :input_lengths[bib]].unsqueeze(0),
743
+ s, input_lengths[bib, ...].unsqueeze(0), text_mask[bib, :input_lengths[bib]].unsqueeze(0))
744
+
745
+ x, _ = model.predictor.lstm(d)
746
+ duration = model.predictor.duration_proj(x)
747
+
748
+ duration = torch.sigmoid(duration).sum(axis=-1)
749
+ pred_dur = torch.round(duration.squeeze()).clamp(min=1)
750
+
751
+ pred_dur[-1] += 5
752
+
753
+ pred_aln_trg = torch.zeros(input_lengths[bib], int(pred_dur.sum().data))
754
+ c_frame = 0
755
+ for i in range(pred_aln_trg.size(0)):
756
+ pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
757
+ c_frame += int(pred_dur[i].data)
758
+
759
+ # encode prosody
760
+ en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(texts.device))
761
+ F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
762
+ out = model.decoder((t_en[bib, :, :input_lengths[bib]].unsqueeze(0) @ pred_aln_trg.unsqueeze(0).to(texts.device)),
763
+ F0_pred, N_pred, ref.squeeze().unsqueeze(0))
764
+
765
+ writer.add_audio('pred/y' + str(bib), out.cpu().numpy().squeeze(), epoch, sample_rate=sr)
766
+
767
+ if bib >= 5:
768
+ break
769
+
770
+ if epoch % saving_epoch == 0:
771
+ if (loss_test / iters_test) < best_loss:
772
+ best_loss = loss_test / iters_test
773
+ print('Saving..')
774
+ state = {
775
+ 'net': {key: model[key].state_dict() for key in model},
776
+ 'optimizer': optimizer.state_dict(),
777
+ 'iters': iters,
778
+ 'val_loss': loss_test / iters_test,
779
+ 'epoch': epoch,
780
+ }
781
+ save_path = osp.join(log_dir, 'epoch_2nd_%05d.pth' % epoch)
782
+ torch.save(state, save_path)
783
+
784
+ # if estimate sigma, save the estimated simga
785
+ if model_params.diffusion.dist.estimate_sigma_data:
786
+ config['model_params']['diffusion']['dist']['sigma_data'] = float(np.mean(running_std))
787
+
788
+ with open(osp.join(log_dir, osp.basename(config_path)), 'w') as outfile:
789
+ yaml.dump(config, outfile, default_flow_style=True)
790
+
791
+ if __name__=="__main__":
792
+ main()
utils.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from monotonic_align import maximum_path
2
+ from monotonic_align import mask_from_lens
3
+ from monotonic_align.core import maximum_path_c
4
+ import numpy as np
5
+ import torch
6
+ import copy
7
+ from torch import nn
8
+ import torch.nn.functional as F
9
+ import torchaudio
10
+ import librosa
11
+ import matplotlib.pyplot as plt
12
+ from munch import Munch
13
+
14
+ def maximum_path(neg_cent, mask):
15
+ """ Cython optimized version.
16
+ neg_cent: [b, t_t, t_s]
17
+ mask: [b, t_t, t_s]
18
+ """
19
+ device = neg_cent.device
20
+ dtype = neg_cent.dtype
21
+ neg_cent = np.ascontiguousarray(neg_cent.data.cpu().numpy().astype(np.float32))
22
+ path = np.ascontiguousarray(np.zeros(neg_cent.shape, dtype=np.int32))
23
+
24
+ t_t_max = np.ascontiguousarray(mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32))
25
+ t_s_max = np.ascontiguousarray(mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32))
26
+ maximum_path_c(path, neg_cent, t_t_max, t_s_max)
27
+ return torch.from_numpy(path).to(device=device, dtype=dtype)
28
+
29
+ def get_data_path_list(train_path=None, val_path=None):
30
+ if train_path is None:
31
+ train_path = "Data/train_list.txt"
32
+ if val_path is None:
33
+ val_path = "Data/val_list.txt"
34
+
35
+ with open(train_path, 'r', encoding='utf-8', errors='ignore') as f:
36
+ train_list = f.readlines()
37
+ with open(val_path, 'r', encoding='utf-8', errors='ignore') as f:
38
+ val_list = f.readlines()
39
+
40
+ return train_list, val_list
41
+
42
+ def length_to_mask(lengths):
43
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
44
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
45
+ return mask
46
+
47
+ # for norm consistency loss
48
+ def log_norm(x, mean=-4, std=4, dim=2):
49
+ """
50
+ normalized log mel -> mel -> norm -> log(norm)
51
+ """
52
+ x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
53
+ return x
54
+
55
+ def get_image(arrs):
56
+ plt.switch_backend('agg')
57
+ fig = plt.figure()
58
+ ax = plt.gca()
59
+ ax.imshow(arrs)
60
+
61
+ return fig
62
+
63
+ def recursive_munch(d):
64
+ if isinstance(d, dict):
65
+ return Munch((k, recursive_munch(v)) for k, v in d.items())
66
+ elif isinstance(d, list):
67
+ return [recursive_munch(v) for v in d]
68
+ else:
69
+ return d
70
+
71
+ def log_print(message, logger):
72
+ logger.info(message)
73
+ print(message)
74
+