Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import streamlit as st | |
| import os | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.chains.question_answering import load_qa_chain | |
| st.set_page_config('preguntaDOC') | |
| st.header("Pregunta a tu PDF") | |
| OPENAI_API_KEY = st.text_input('OpenAI API Key', type='password') | |
| pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear) | |
| def create_embeddings(pdf): | |
| pdf_reader = PdfReader(pdf) | |
| text = "" | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=800, | |
| chunk_overlap=100, | |
| length_function=len | |
| ) | |
| chunks = text_splitter.split_text(text) | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") | |
| knowledge_base = FAISS.from_texts(chunks, embeddings) | |
| return knowledge_base | |
| if pdf_obj: | |
| knowledge_base = create_embeddings(pdf_obj) | |
| user_question = st.text_input("Haz una pregunta sobre tu PDF:") | |
| if user_question: | |
| os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY | |
| docs = knowledge_base.similarity_search(user_question, 3) | |
| llm = ChatOpenAI(model_name='gpt-3.5-turbo') | |
| chain = load_qa_chain(llm, chain_type="stuff") | |
| respuesta = chain.run(input_documents=docs, question=user_question) | |
| st.write(respuesta) |