Spaces:
Sleeping
Sleeping
Upload streamlit app to ask ChatGPT about a PDF
Browse files- app.py +46 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.chat_models import ChatOpenAI
|
9 |
+
from langchain.chains.question_answering import load_qa_chain
|
10 |
+
|
11 |
+
st.set_page_config('preguntaDOC')
|
12 |
+
st.header("Pregunta a tu PDF")
|
13 |
+
OPENAI_API_KEY = st.text_input('OpenAI API Key', type='password')
|
14 |
+
pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear)
|
15 |
+
|
16 |
+
@st.cache_resource
|
17 |
+
def create_embeddings(pdf):
|
18 |
+
pdf_reader = PdfReader(pdf)
|
19 |
+
text = ""
|
20 |
+
for page in pdf_reader.pages:
|
21 |
+
text += page.extract_text()
|
22 |
+
|
23 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
24 |
+
chunk_size=800,
|
25 |
+
chunk_overlap=100,
|
26 |
+
length_function=len
|
27 |
+
)
|
28 |
+
chunks = text_splitter.split_text(text)
|
29 |
+
|
30 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
31 |
+
knowledge_base = FAISS.from_texts(chunks, embeddings)
|
32 |
+
|
33 |
+
return knowledge_base
|
34 |
+
|
35 |
+
if pdf_obj:
|
36 |
+
knowledge_base = create_embeddings(pdf_obj)
|
37 |
+
user_question = st.text_input("Haz una pregunta sobre tu PDF:")
|
38 |
+
|
39 |
+
if user_question:
|
40 |
+
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
|
41 |
+
docs = knowledge_base.similarity_search(user_question, 3)
|
42 |
+
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
|
43 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
44 |
+
respuesta = chain.run(input_documents=docs, question=user_question)
|
45 |
+
|
46 |
+
st.write(respuesta)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
langchain
|
3 |
+
faiss-cpu
|
4 |
+
streamlit
|
5 |
+
PyPDF2
|