|
import gradio as gr |
|
import joblib |
|
import numpy as np |
|
|
|
|
|
model = joblib.load("conme.pkl") |
|
scaler = joblib.load("scaler.joblib") |
|
|
|
def predict(soil_moisture, temperature, air_humidity, light_intensity): |
|
|
|
input_data = np.array([[soil_moisture, temperature, air_humidity, light_intensity]]) |
|
|
|
std_data = scaler.transform(input_data) |
|
|
|
prediction = model.predict(std_data) |
|
return int(prediction[0]) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Number(label="Soil Moisture"), |
|
gr.Number(label="Temperature"), |
|
gr.Number(label="Air Humidity"), |
|
gr.Number(label="Light Intensity"), |
|
], |
|
outputs="text", |
|
title="Plant Watering Prediction" |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|