Spaces:
Sleeping
Sleeping
import mlflow | |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score | |
from sklearn.model_selection import GridSearchCV | |
import pandas as pd | |
from sklearn.tree import DecisionTreeClassifier | |
from main import X_train, X_test, y_train, y_test | |
from sklearn.neighbors import KNeighborsClassifier | |
from urllib.parse import urlparse | |
def train_and_evaluate_with_mlflow(model, param_grid, X_train, X_test, y_train, y_test, model_name, **kwargs): | |
""" | |
Train a machine learning model using GridSearchCV and evaluate its performance, | |
with all results and the model itself logged to MLflow. | |
Parameters: | |
- model: The machine learning model to train. | |
- param_grid: Dictionary with parameters names as keys and lists of parameter settings to try as values. | |
- X_train: Training data features. | |
- X_test: Testing data features. | |
- y_train: Training data labels. | |
- y_test: Testing data labels. | |
- model_name: The name of the model (for MLflow logging). | |
- **kwargs: Additional keyword arguments to pass to the GridSearchCV. | |
Returns: | |
- The best estimator from GridSearchCV. | |
""" | |
with mlflow.start_run(): | |
mlflow.set_experiment("Student Status Prediction") | |
# Perform grid search to find the best parameters | |
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, **kwargs) | |
grid_search.fit(X_train, y_train) | |
# Extract information from the grid search for logging | |
cv_results_df = pd.DataFrame(grid_search.cv_results_) | |
# Get the top 5 best parameter combinations by rank_test_score | |
top5_results = cv_results_df.sort_values('rank_test_score').head(5) | |
# Log the best parameters | |
best_params = grid_search.best_params_ | |
mlflow.log_params(best_params) | |
# Evaluate the model | |
best_model = grid_search.best_estimator_ | |
y_pred = best_model.predict(X_test) | |
# Log the performance metrics | |
mlflow.log_metric("accuracy", accuracy_score(y_test, y_pred)) | |
mlflow.log_metric("precision", precision_score(y_test, y_pred, average='weighted')) | |
mlflow.log_metric("recall", recall_score(y_test, y_pred, average='weighted')) | |
mlflow.log_metric("f1", f1_score(y_test, y_pred, average='weighted')) | |
# Log the top 5 best results as an artifact | |
top5_results.to_csv("top5_results.csv", index=False) | |
mlflow.log_artifact("top5_results.csv") | |
# Log the best model in MLflow | |
mlflow.sklearn.log_model(best_model, model_name) | |
# For remote server only (Dagshub) | |
remote_server_uri = "https://dagshub.com/Danjari/Dropout.mlflow" | |
mlflow.set_tracking_uri(remote_server_uri) | |
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme | |
# Model registry does not work with file store | |
if tracking_url_type_store != "file": | |
# Register the model | |
# There are other ways to use the Model Registry, which depends on the use case, | |
# please refer to the doc for more information: | |
# https://mlflow.org/docs/latest/model-registry.html#api-workflow | |
mlflow.sklearn.log_model(best_model, "model", registered_model_name=model_name) | |
else: | |
mlflow.sklearn.log_model(best_model, "model") | |
return best_model | |
# Decision Tree hyperparameters | |
dt_param_grid = { | |
'max_depth': [3, 4,5,6, 10], | |
'min_samples_leaf': [1, 2, 4] | |
} | |
# KNN hyperparameters | |
k_list = list(range(1, 101)) | |
knn_param_grid = { | |
'n_neighbors': k_list | |
} | |
# Set the MLflow experiment name | |
# mlflow.set_experiment("Model Comparison Experiment") | |
# Run Decision Tree experiment | |
train_and_evaluate_with_mlflow( | |
DecisionTreeClassifier(random_state=42), | |
dt_param_grid, | |
X_train, X_test, y_train, y_test, | |
model_name="DecisionTree", | |
cv=5 | |
) | |
# Run KNN experiment | |
train_and_evaluate_with_mlflow( | |
KNeighborsClassifier(), | |
knn_param_grid, | |
X_train, X_test, y_train, y_test, | |
model_name="KNN", | |
cv=5 | |
) | |