Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- Student_modified.csv +0 -0
- Students.csv +0 -0
- contribution subset.png +0 -0
- feature_importance.png +0 -0
- feature_subset.png +0 -0
- ml_flow.py +113 -0
- requirements.txt +12 -0
Student_modified.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Students.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
contribution subset.png
ADDED
feature_importance.png
ADDED
feature_subset.png
ADDED
ml_flow.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mlflow
|
2 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
3 |
+
from sklearn.model_selection import GridSearchCV
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.tree import DecisionTreeClassifier
|
6 |
+
from main import X_train, X_test, y_train, y_test
|
7 |
+
from sklearn.neighbors import KNeighborsClassifier
|
8 |
+
from urllib.parse import urlparse
|
9 |
+
def train_and_evaluate_with_mlflow(model, param_grid, X_train, X_test, y_train, y_test, model_name, **kwargs):
|
10 |
+
"""
|
11 |
+
Train a machine learning model using GridSearchCV and evaluate its performance,
|
12 |
+
with all results and the model itself logged to MLflow.
|
13 |
+
|
14 |
+
Parameters:
|
15 |
+
- model: The machine learning model to train.
|
16 |
+
- param_grid: Dictionary with parameters names as keys and lists of parameter settings to try as values.
|
17 |
+
- X_train: Training data features.
|
18 |
+
- X_test: Testing data features.
|
19 |
+
- y_train: Training data labels.
|
20 |
+
- y_test: Testing data labels.
|
21 |
+
- model_name: The name of the model (for MLflow logging).
|
22 |
+
- **kwargs: Additional keyword arguments to pass to the GridSearchCV.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
- The best estimator from GridSearchCV.
|
26 |
+
"""
|
27 |
+
with mlflow.start_run():
|
28 |
+
mlflow.set_experiment("Student Status Prediction")
|
29 |
+
|
30 |
+
# Perform grid search to find the best parameters
|
31 |
+
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, **kwargs)
|
32 |
+
grid_search.fit(X_train, y_train)
|
33 |
+
|
34 |
+
# Extract information from the grid search for logging
|
35 |
+
cv_results_df = pd.DataFrame(grid_search.cv_results_)
|
36 |
+
|
37 |
+
# Get the top 5 best parameter combinations by rank_test_score
|
38 |
+
top5_results = cv_results_df.sort_values('rank_test_score').head(5)
|
39 |
+
|
40 |
+
# Log the best parameters
|
41 |
+
best_params = grid_search.best_params_
|
42 |
+
mlflow.log_params(best_params)
|
43 |
+
|
44 |
+
# Evaluate the model
|
45 |
+
best_model = grid_search.best_estimator_
|
46 |
+
y_pred = best_model.predict(X_test)
|
47 |
+
|
48 |
+
# Log the performance metrics
|
49 |
+
mlflow.log_metric("accuracy", accuracy_score(y_test, y_pred))
|
50 |
+
mlflow.log_metric("precision", precision_score(y_test, y_pred, average='weighted'))
|
51 |
+
mlflow.log_metric("recall", recall_score(y_test, y_pred, average='weighted'))
|
52 |
+
mlflow.log_metric("f1", f1_score(y_test, y_pred, average='weighted'))
|
53 |
+
|
54 |
+
# Log the top 5 best results as an artifact
|
55 |
+
top5_results.to_csv("top5_results.csv", index=False)
|
56 |
+
mlflow.log_artifact("top5_results.csv")
|
57 |
+
|
58 |
+
# Log the best model in MLflow
|
59 |
+
mlflow.sklearn.log_model(best_model, model_name)
|
60 |
+
|
61 |
+
# For remote server only (Dagshub)
|
62 |
+
remote_server_uri = "https://dagshub.com/Danjari/Dropout.mlflow"
|
63 |
+
mlflow.set_tracking_uri(remote_server_uri)
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
|
68 |
+
|
69 |
+
# Model registry does not work with file store
|
70 |
+
if tracking_url_type_store != "file":
|
71 |
+
# Register the model
|
72 |
+
# There are other ways to use the Model Registry, which depends on the use case,
|
73 |
+
# please refer to the doc for more information:
|
74 |
+
# https://mlflow.org/docs/latest/model-registry.html#api-workflow
|
75 |
+
mlflow.sklearn.log_model(best_model, "model", registered_model_name=model_name)
|
76 |
+
else:
|
77 |
+
mlflow.sklearn.log_model(best_model, "model")
|
78 |
+
|
79 |
+
return best_model
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
# Decision Tree hyperparameters
|
84 |
+
dt_param_grid = {
|
85 |
+
'max_depth': [3, 4,5,6, 10],
|
86 |
+
'min_samples_leaf': [1, 2, 4]
|
87 |
+
}
|
88 |
+
|
89 |
+
# KNN hyperparameters
|
90 |
+
k_list = list(range(1, 101))
|
91 |
+
knn_param_grid = {
|
92 |
+
'n_neighbors': k_list
|
93 |
+
}
|
94 |
+
|
95 |
+
# Set the MLflow experiment name
|
96 |
+
# mlflow.set_experiment("Model Comparison Experiment")
|
97 |
+
|
98 |
+
# Run Decision Tree experiment
|
99 |
+
train_and_evaluate_with_mlflow(
|
100 |
+
DecisionTreeClassifier(random_state=42),
|
101 |
+
dt_param_grid,
|
102 |
+
X_train, X_test, y_train, y_test,
|
103 |
+
model_name="DecisionTree",
|
104 |
+
cv=5
|
105 |
+
)
|
106 |
+
# Run KNN experiment
|
107 |
+
train_and_evaluate_with_mlflow(
|
108 |
+
KNeighborsClassifier(),
|
109 |
+
knn_param_grid,
|
110 |
+
X_train, X_test, y_train, y_test,
|
111 |
+
model_name="KNN",
|
112 |
+
cv=5
|
113 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
matplotlib
|
4 |
+
seaborn
|
5 |
+
numpy
|
6 |
+
altair
|
7 |
+
graphviz
|
8 |
+
streamlit_option_menu
|
9 |
+
scikit-learn
|
10 |
+
Pillow
|
11 |
+
shapash
|
12 |
+
mlflow
|