|
import gradio as gr |
|
import joblib |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import json |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
print("Pokrećem aplikaciju...") |
|
|
|
|
|
svm_pipeline = joblib.load("svm_pipeline.pkl") |
|
|
|
with open("word2idx.json", "r", encoding="utf-8") as f: |
|
word2idx = json.load(f) |
|
|
|
class CNNModel(nn.Module): |
|
def __init__(self, vocab_size, embed_dim=300, num_classes=3, kernel_sizes=[3,4,5], num_filters=128): |
|
super(CNNModel, self).__init__() |
|
self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=0) |
|
self.convs = nn.ModuleList([ |
|
nn.Conv2d(1, num_filters, (k, embed_dim)) for k in kernel_sizes |
|
]) |
|
self.dropout = nn.Dropout(0.5) |
|
self.fc = nn.Linear(num_filters * len(kernel_sizes), num_classes) |
|
def forward(self, x): |
|
x = self.embedding(x).unsqueeze(1) |
|
convs = [F.relu(conv(x)).squeeze(3) for conv in self.convs] |
|
pools = [F.max_pool1d(c, c.size(2)).squeeze(2) for c in convs] |
|
x = torch.cat(pools, 1) |
|
x = self.dropout(x) |
|
return self.fc(x) |
|
|
|
class GRUModel(nn.Module): |
|
def __init__(self, vocab_size, embed_dim=300, hidden_dim=256, num_layers=1, num_classes=3): |
|
super(GRUModel, self).__init__() |
|
self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=0) |
|
self.gru = nn.GRU(embed_dim, hidden_dim, num_layers=num_layers, batch_first=True) |
|
self.fc = nn.Linear(hidden_dim, num_classes) |
|
def forward(self, x): |
|
x = self.embedding(x) |
|
_, h_n = self.gru(x) |
|
out = self.fc(h_n[-1]) |
|
return out |
|
|
|
vocab_size = len(word2idx) + 1 |
|
embed_dim = 300 |
|
num_classes = 3 |
|
|
|
cnn_model = CNNModel(vocab_size, embed_dim, num_classes) |
|
cnn_model.load_state_dict(torch.load("cnn_model.pt", map_location=torch.device('cpu'))) |
|
cnn_model.eval() |
|
|
|
gru_model = GRUModel(vocab_size, embed_dim, hidden_dim=256, num_layers=1, num_classes=num_classes) |
|
gru_model.load_state_dict(torch.load("gru_model.pt", map_location=torch.device('cpu'))) |
|
gru_model.eval() |
|
|
|
bert_tokenizer = AutoTokenizer.from_pretrained("my_finetuned_model") |
|
bert_model = AutoModelForSequenceClassification.from_pretrained("my_finetuned_model") |
|
bert_model.eval() |
|
|
|
|
|
croslo_tokenizer = AutoTokenizer.from_pretrained("CroSlo") |
|
croslo_model = AutoModelForSequenceClassification.from_pretrained("CroSlo") |
|
croslo_model.eval() |
|
|
|
label_names = {0: 'pozitivno', 1: 'neutralno', 2: 'negativno'} |
|
|
|
def text_to_indices(text, max_len=100): |
|
tokens = text.lower().split() |
|
indices = [word2idx.get(token, 0) for token in tokens] |
|
if len(indices) < max_len: |
|
indices += [0] * (max_len - len(indices)) |
|
else: |
|
indices = indices[:max_len] |
|
tensor = torch.tensor([indices], dtype=torch.long) |
|
return tensor |
|
|
|
def predict_svm(text): |
|
proba = svm_pipeline.predict_proba([text])[0] |
|
pred = svm_pipeline.classes_[proba.argmax()] |
|
return f"{label_names[pred]} (p={proba.max():.2f})" |
|
|
|
def predict_cnn(text): |
|
with torch.no_grad(): |
|
inputs = text_to_indices(text) |
|
outputs = cnn_model(inputs) |
|
probs = F.softmax(outputs, dim=1) |
|
pred = torch.argmax(probs, dim=1).item() |
|
confidence = probs[0][pred].item() |
|
return f"{label_names[pred]} (p={confidence:.2f})" |
|
|
|
def predict_gru(text): |
|
with torch.no_grad(): |
|
inputs = text_to_indices(text) |
|
outputs = gru_model(inputs) |
|
probs = F.softmax(outputs, dim=1) |
|
pred = torch.argmax(probs, dim=1).item() |
|
confidence = probs[0][pred].item() |
|
return f"{label_names[pred]} (p={confidence:.2f})" |
|
|
|
def predict_bert(text): |
|
inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True) |
|
with torch.no_grad(): |
|
outputs = bert_model(**inputs) |
|
probs = F.softmax(outputs.logits, dim=1) |
|
pred = torch.argmax(probs, dim=1).item() |
|
confidence = probs[0][pred].item() |
|
return f"{label_names[pred]} (p={confidence:.2f})" |
|
|
|
def predict_croslo(text): |
|
inputs = croslo_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) |
|
with torch.no_grad(): |
|
outputs = croslo_model(**inputs) |
|
probs = F.softmax(outputs.logits, dim=1) |
|
pred = torch.argmax(probs, dim=1).item() |
|
confidence = probs[0][pred].item() |
|
return f"{label_names[pred]} (p={confidence:.2f})" |
|
|
|
def predict_all(text): |
|
return ( |
|
predict_svm(text), |
|
predict_cnn(text), |
|
predict_gru(text), |
|
predict_bert(text), |
|
predict_croslo(text), |
|
) |
|
|
|
def clear_all(): |
|
return "", "", "", "", "", "" |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
<h1 style="text-align: center; font-size: 48px; margin-bottom: 5px;">Analiza sentimenta</h1> |
|
<p style="text-align: center; font-size: 16px; margin-top: 0;">Predikcije koriste SVM, CNN, GRU, BERTić i CroSlo modele.</p> |
|
""", |
|
elem_id="naslov" |
|
) |
|
|
|
input_text = gr.Textbox(lines=3, label="Unesite rečenicu za analizu:") |
|
|
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
clear_btn = gr.Button("Clear", variant="secondary") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("### Machine Learning") |
|
svm_output = gr.Textbox(label="SVM (RBF)") |
|
with gr.Column(): |
|
gr.Markdown("### Deep Learning") |
|
cnn_output = gr.Textbox(label="CNN") |
|
gru_output = gr.Textbox(label="GRU") |
|
with gr.Column(): |
|
gr.Markdown("### Transformers") |
|
bert_output = gr.Textbox(label="BERTić") |
|
croslo_output = gr.Textbox(label="CroSlo BERT") |
|
|
|
submit_btn.click(fn=predict_all, inputs=input_text, outputs=[svm_output, cnn_output, gru_output, bert_output, croslo_output]) |
|
clear_btn.click(fn=clear_all, inputs=None, outputs=[input_text, svm_output, cnn_output, gru_output, bert_output, croslo_output]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |
|
|