ImageSearchClip / src /streamlit_app.py
NEXAS's picture
Update src/streamlit_app.py
dc9925a verified
import streamlit as st
import torch
import clip
from PIL import Image
import os
import numpy as np
import chromadb
import requests
import tempfile
import time
# ----- Setup -----
st.set_page_config(page_title="CLIP Image Search", layout="wide")
CACHE_DIR = tempfile.gettempdir()
CHROMA_PATH = os.path.join(CACHE_DIR, "chroma_db")
DEMO_DIR = os.path.join(CACHE_DIR, "demo_images")
os.makedirs(DEMO_DIR, exist_ok=True)
# ----- Session State Init -----
if 'dataset_loaded' not in st.session_state:
st.session_state.dataset_loaded = False
if 'dataset_name' not in st.session_state:
st.session_state.dataset_name = None
if 'demo_images' not in st.session_state:
st.session_state.demo_images = []
if 'user_images' not in st.session_state:
st.session_state.user_images = []
# ----- Load CLIP Model -----
if 'model' not in st.session_state:
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device, download_root=CACHE_DIR)
st.session_state.model = model
st.session_state.preprocess = preprocess
st.session_state.device = device
# ----- Initialize ChromaDB -----
if 'chroma_client' not in st.session_state:
st.session_state.chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
st.session_state.demo_collection = st.session_state.chroma_client.get_or_create_collection(
name="demo_images", metadata={"hnsw:space": "cosine"}
)
st.session_state.user_collection = st.session_state.chroma_client.get_or_create_collection(
name="user_images", metadata={"hnsw:space": "cosine"}
)
# ----- Sidebar -----
with st.sidebar:
st.title("🧠 CLIP Search App")
st.markdown("Choose a dataset to begin:")
if st.button("πŸ“¦ Load Demo Images"):
st.session_state.dataset_name = "demo"
st.session_state.dataset_loaded = False
if st.button("πŸ“€ Upload Your Images"):
st.session_state.dataset_name = "user"
st.session_state.dataset_loaded = False
# ----- Helper -----
def download_image_with_retry(url, path, retries=3, delay=1.0):
for attempt in range(retries):
try:
r = requests.get(url, timeout=10)
if r.status_code == 200:
with open(path, 'wb') as f:
f.write(r.content)
return True
except Exception:
time.sleep(delay)
return False
# ----- Main App -----
left, right = st.columns([2, 1])
with left:
st.title("πŸ” CLIP-Based Image Search")
# ----- Load Demo -----
if st.session_state.dataset_name == "demo" and not st.session_state.dataset_loaded:
with st.spinner("Downloading and indexing demo images..."):
st.session_state.demo_collection.delete(ids=[str(i) for i in range(50)])
demo_image_paths, demo_images = [], []
for i in range(50):
path = os.path.join(DEMO_DIR, f"img_{i+1:02}.jpg")
if not os.path.exists(path):
url = f"https://picsum.photos/seed/{i}/1024/768"
download_image_with_retry(url, path)
try:
demo_images.append(Image.open(path).convert("RGB"))
demo_image_paths.append(path)
except:
continue
embeddings, ids, metadatas = [], [], []
for i, img in enumerate(demo_images):
img_tensor = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
with torch.no_grad():
embedding = st.session_state.model.encode_image(img_tensor).cpu().numpy().flatten()
embeddings.append(embedding)
ids.append(str(i))
metadatas.append({"path": demo_image_paths[i]})
st.session_state.demo_collection.add(embeddings=embeddings, ids=ids, metadatas=metadatas)
st.session_state.demo_images = demo_images
st.session_state.dataset_loaded = True
st.success("βœ… Demo images loaded!")
# ----- Upload User Images -----
if st.session_state.dataset_name == "user" and not st.session_state.dataset_loaded:
uploaded = st.file_uploader("Upload your images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
if uploaded:
st.session_state.user_collection.delete(ids=[
str(i) for i in range(st.session_state.user_collection.count())
])
user_images = []
for i, file in enumerate(uploaded):
try:
img = Image.open(file).convert("RGB")
except:
continue
user_images.append(img)
img_tensor = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
with torch.no_grad():
embedding = st.session_state.model.encode_image(img_tensor).cpu().numpy().flatten()
st.session_state.user_collection.add(
embeddings=[embedding], ids=[str(i)], metadatas=[{"index": i}]
)
st.session_state.user_images = user_images
st.session_state.dataset_loaded = True
st.success(f"βœ… Uploaded {len(user_images)} images.")
# ----- Search Section -----
if st.session_state.dataset_loaded:
st.subheader("πŸ”Ž Search")
query_type = st.radio("Search by:", ("Text", "Image"))
query_embedding = None
if query_type == "Text":
text_query = st.text_input("Enter your search prompt:")
if text_query:
tokens = clip.tokenize([text_query]).to(st.session_state.device)
with torch.no_grad():
query_embedding = st.session_state.model.encode_text(tokens).cpu().numpy().flatten()
elif query_type == "Image":
query_file = st.file_uploader("Upload query image", type=["jpg", "jpeg", "png"], key="query_image")
if query_file:
query_img = Image.open(query_file).convert("RGB")
st.image(query_img, caption="Query Image", width=200)
query_tensor = st.session_state.preprocess(query_img).unsqueeze(0).to(st.session_state.device)
with torch.no_grad():
query_embedding = st.session_state.model.encode_image(query_tensor).cpu().numpy().flatten()
# ----- Perform Search -----
if query_embedding is not None:
if st.session_state.dataset_name == "demo":
collection = st.session_state.demo_collection
images = st.session_state.demo_images
else:
collection = st.session_state.user_collection
images = st.session_state.user_images
if collection.count() > 0:
results = collection.query(
query_embeddings=[query_embedding],
n_results=min(5, collection.count())
)
ids = results["ids"][0]
distances = results["distances"][0]
similarities = [1 - d for d in distances]
st.subheader("🎯 Top Matches")
cols = st.columns(len(ids))
for i, (img_id, sim) in enumerate(zip(ids, similarities)):
with cols[i]:
st.image(images[int(img_id)], caption=f"Similarity: {sim:.3f}", use_column_width=True)
else:
st.warning("⚠️ No images available for search.")
else:
st.info("πŸ‘ˆ Choose a dataset from the sidebar to get started.")
# ----- Right Panel: Show Current Dataset Images -----
with right:
st.subheader("πŸ–ΌοΈ Dataset Preview")
image_list = st.session_state.demo_images if st.session_state.dataset_name == "demo" else st.session_state.user_images
if st.session_state.dataset_loaded and image_list:
st.caption(f"Showing {len(image_list)} images")
for i, img in enumerate(image_list[:20]):
st.image(img, use_column_width=True)
else:
st.markdown("No images to preview yet.")