Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Test utility functions for manipulating Keras models.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import unittest | |
import tensorflow.compat.v1 as tf | |
from object_detection.utils import model_util | |
from object_detection.utils import tf_version | |
class ExtractSubmodelUtilTest(tf.test.TestCase): | |
def test_simple_model(self): | |
inputs = tf.keras.Input(shape=(256,)) # Returns a placeholder tensor | |
# A layer instance is callable on a tensor, and returns a tensor. | |
x = tf.keras.layers.Dense(128, activation='relu', name='a')(inputs) | |
x = tf.keras.layers.Dense(64, activation='relu', name='b')(x) | |
x = tf.keras.layers.Dense(32, activation='relu', name='c')(x) | |
x = tf.keras.layers.Dense(16, activation='relu', name='d')(x) | |
x = tf.keras.layers.Dense(8, activation='relu', name='e')(x) | |
predictions = tf.keras.layers.Dense(10, activation='softmax')(x) | |
model = tf.keras.Model(inputs=inputs, outputs=predictions) | |
new_in = model.get_layer( | |
name='b').input | |
new_out = model.get_layer( | |
name='d').output | |
new_model = model_util.extract_submodel( | |
model=model, | |
inputs=new_in, | |
outputs=new_out) | |
batch_size = 3 | |
ones = tf.ones((batch_size, 128)) | |
final_out = new_model(ones) | |
self.assertAllEqual(final_out.shape, (batch_size, 16)) | |
if __name__ == '__main__': | |
tf.test.main() | |