Spaces:
Runtime error
Runtime error
| # Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Tests for post_processing_builder.""" | |
| import tensorflow.compat.v1 as tf | |
| from google.protobuf import text_format | |
| from object_detection.builders import post_processing_builder | |
| from object_detection.protos import post_processing_pb2 | |
| from object_detection.utils import test_case | |
| class PostProcessingBuilderTest(test_case.TestCase): | |
| def test_build_non_max_suppressor_with_correct_parameters(self): | |
| post_processing_text_proto = """ | |
| batch_non_max_suppression { | |
| score_threshold: 0.7 | |
| iou_threshold: 0.6 | |
| max_detections_per_class: 100 | |
| max_total_detections: 300 | |
| soft_nms_sigma: 0.4 | |
| } | |
| """ | |
| post_processing_config = post_processing_pb2.PostProcessing() | |
| text_format.Merge(post_processing_text_proto, post_processing_config) | |
| non_max_suppressor, _ = post_processing_builder.build( | |
| post_processing_config) | |
| self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100) | |
| self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300) | |
| self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7) | |
| self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6) | |
| self.assertAlmostEqual(non_max_suppressor.keywords['soft_nms_sigma'], 0.4) | |
| def test_build_non_max_suppressor_with_correct_parameters_classagnostic_nms( | |
| self): | |
| post_processing_text_proto = """ | |
| batch_non_max_suppression { | |
| score_threshold: 0.7 | |
| iou_threshold: 0.6 | |
| max_detections_per_class: 10 | |
| max_total_detections: 300 | |
| use_class_agnostic_nms: True | |
| max_classes_per_detection: 1 | |
| } | |
| """ | |
| post_processing_config = post_processing_pb2.PostProcessing() | |
| text_format.Merge(post_processing_text_proto, post_processing_config) | |
| non_max_suppressor, _ = post_processing_builder.build( | |
| post_processing_config) | |
| self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 10) | |
| self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300) | |
| self.assertEqual(non_max_suppressor.keywords['max_classes_per_detection'], | |
| 1) | |
| self.assertEqual(non_max_suppressor.keywords['use_class_agnostic_nms'], | |
| True) | |
| self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7) | |
| self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6) | |
| def test_build_identity_score_converter(self): | |
| post_processing_text_proto = """ | |
| score_converter: IDENTITY | |
| """ | |
| post_processing_config = post_processing_pb2.PostProcessing() | |
| text_format.Merge(post_processing_text_proto, post_processing_config) | |
| _, score_converter = post_processing_builder.build( | |
| post_processing_config) | |
| self.assertEqual(score_converter.__name__, 'identity_with_logit_scale') | |
| def graph_fn(): | |
| inputs = tf.constant([1, 1], tf.float32) | |
| outputs = score_converter(inputs) | |
| return outputs | |
| converted_scores = self.execute_cpu(graph_fn, []) | |
| self.assertAllClose(converted_scores, [1, 1]) | |
| def test_build_identity_score_converter_with_logit_scale(self): | |
| post_processing_text_proto = """ | |
| score_converter: IDENTITY | |
| logit_scale: 2.0 | |
| """ | |
| post_processing_config = post_processing_pb2.PostProcessing() | |
| text_format.Merge(post_processing_text_proto, post_processing_config) | |
| _, score_converter = post_processing_builder.build(post_processing_config) | |
| self.assertEqual(score_converter.__name__, 'identity_with_logit_scale') | |
| def graph_fn(): | |
| inputs = tf.constant([1, 1], tf.float32) | |
| outputs = score_converter(inputs) | |
| return outputs | |
| converted_scores = self.execute_cpu(graph_fn, []) | |
| self.assertAllClose(converted_scores, [.5, .5]) | |
| def test_build_sigmoid_score_converter(self): | |
| post_processing_text_proto = """ | |
| score_converter: SIGMOID | |
| """ | |
| post_processing_config = post_processing_pb2.PostProcessing() | |
| text_format.Merge(post_processing_text_proto, post_processing_config) | |
| _, score_converter = post_processing_builder.build(post_processing_config) | |
| self.assertEqual(score_converter.__name__, 'sigmoid_with_logit_scale') | |
| def test_build_softmax_score_converter(self): | |
| post_processing_text_proto = """ | |
| score_converter: SOFTMAX | |
| """ | |
| post_processing_config = post_processing_pb2.PostProcessing() | |
| text_format.Merge(post_processing_text_proto, post_processing_config) | |
| _, score_converter = post_processing_builder.build(post_processing_config) | |
| self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale') | |
| def test_build_softmax_score_converter_with_temperature(self): | |
| post_processing_text_proto = """ | |
| score_converter: SOFTMAX | |
| logit_scale: 2.0 | |
| """ | |
| post_processing_config = post_processing_pb2.PostProcessing() | |
| text_format.Merge(post_processing_text_proto, post_processing_config) | |
| _, score_converter = post_processing_builder.build(post_processing_config) | |
| self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale') | |
| def test_build_calibrator_with_nonempty_config(self): | |
| """Test that identity function used when no calibration_config specified.""" | |
| # Calibration config maps all scores to 0.5. | |
| post_processing_text_proto = """ | |
| score_converter: SOFTMAX | |
| calibration_config { | |
| function_approximation { | |
| x_y_pairs { | |
| x_y_pair { | |
| x: 0.0 | |
| y: 0.5 | |
| } | |
| x_y_pair { | |
| x: 1.0 | |
| y: 0.5 | |
| }}}}""" | |
| post_processing_config = post_processing_pb2.PostProcessing() | |
| text_format.Merge(post_processing_text_proto, post_processing_config) | |
| _, calibrated_score_conversion_fn = post_processing_builder.build( | |
| post_processing_config) | |
| self.assertEqual(calibrated_score_conversion_fn.__name__, | |
| 'calibrate_with_function_approximation') | |
| def graph_fn(): | |
| input_scores = tf.constant([1, 1], tf.float32) | |
| outputs = calibrated_score_conversion_fn(input_scores) | |
| return outputs | |
| calibrated_scores = self.execute_cpu(graph_fn, []) | |
| self.assertAllClose(calibrated_scores, [0.5, 0.5]) | |
| def test_build_temperature_scaling_calibrator(self): | |
| post_processing_text_proto = """ | |
| score_converter: SOFTMAX | |
| calibration_config { | |
| temperature_scaling_calibration { | |
| scaler: 2.0 | |
| }}""" | |
| post_processing_config = post_processing_pb2.PostProcessing() | |
| text_format.Merge(post_processing_text_proto, post_processing_config) | |
| _, calibrated_score_conversion_fn = post_processing_builder.build( | |
| post_processing_config) | |
| self.assertEqual(calibrated_score_conversion_fn.__name__, | |
| 'calibrate_with_temperature_scaling_calibration') | |
| def graph_fn(): | |
| input_scores = tf.constant([1, 1], tf.float32) | |
| outputs = calibrated_score_conversion_fn(input_scores) | |
| return outputs | |
| calibrated_scores = self.execute_cpu(graph_fn, []) | |
| self.assertAllClose(calibrated_scores, [0.5, 0.5]) | |
| if __name__ == '__main__': | |
| tf.test.main() | |