Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for post_processing_builder.""" | |
import tensorflow.compat.v1 as tf | |
from google.protobuf import text_format | |
from object_detection.builders import post_processing_builder | |
from object_detection.protos import post_processing_pb2 | |
from object_detection.utils import test_case | |
class PostProcessingBuilderTest(test_case.TestCase): | |
def test_build_non_max_suppressor_with_correct_parameters(self): | |
post_processing_text_proto = """ | |
batch_non_max_suppression { | |
score_threshold: 0.7 | |
iou_threshold: 0.6 | |
max_detections_per_class: 100 | |
max_total_detections: 300 | |
soft_nms_sigma: 0.4 | |
} | |
""" | |
post_processing_config = post_processing_pb2.PostProcessing() | |
text_format.Merge(post_processing_text_proto, post_processing_config) | |
non_max_suppressor, _ = post_processing_builder.build( | |
post_processing_config) | |
self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100) | |
self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300) | |
self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7) | |
self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6) | |
self.assertAlmostEqual(non_max_suppressor.keywords['soft_nms_sigma'], 0.4) | |
def test_build_non_max_suppressor_with_correct_parameters_classagnostic_nms( | |
self): | |
post_processing_text_proto = """ | |
batch_non_max_suppression { | |
score_threshold: 0.7 | |
iou_threshold: 0.6 | |
max_detections_per_class: 10 | |
max_total_detections: 300 | |
use_class_agnostic_nms: True | |
max_classes_per_detection: 1 | |
} | |
""" | |
post_processing_config = post_processing_pb2.PostProcessing() | |
text_format.Merge(post_processing_text_proto, post_processing_config) | |
non_max_suppressor, _ = post_processing_builder.build( | |
post_processing_config) | |
self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 10) | |
self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300) | |
self.assertEqual(non_max_suppressor.keywords['max_classes_per_detection'], | |
1) | |
self.assertEqual(non_max_suppressor.keywords['use_class_agnostic_nms'], | |
True) | |
self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7) | |
self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6) | |
def test_build_identity_score_converter(self): | |
post_processing_text_proto = """ | |
score_converter: IDENTITY | |
""" | |
post_processing_config = post_processing_pb2.PostProcessing() | |
text_format.Merge(post_processing_text_proto, post_processing_config) | |
_, score_converter = post_processing_builder.build( | |
post_processing_config) | |
self.assertEqual(score_converter.__name__, 'identity_with_logit_scale') | |
def graph_fn(): | |
inputs = tf.constant([1, 1], tf.float32) | |
outputs = score_converter(inputs) | |
return outputs | |
converted_scores = self.execute_cpu(graph_fn, []) | |
self.assertAllClose(converted_scores, [1, 1]) | |
def test_build_identity_score_converter_with_logit_scale(self): | |
post_processing_text_proto = """ | |
score_converter: IDENTITY | |
logit_scale: 2.0 | |
""" | |
post_processing_config = post_processing_pb2.PostProcessing() | |
text_format.Merge(post_processing_text_proto, post_processing_config) | |
_, score_converter = post_processing_builder.build(post_processing_config) | |
self.assertEqual(score_converter.__name__, 'identity_with_logit_scale') | |
def graph_fn(): | |
inputs = tf.constant([1, 1], tf.float32) | |
outputs = score_converter(inputs) | |
return outputs | |
converted_scores = self.execute_cpu(graph_fn, []) | |
self.assertAllClose(converted_scores, [.5, .5]) | |
def test_build_sigmoid_score_converter(self): | |
post_processing_text_proto = """ | |
score_converter: SIGMOID | |
""" | |
post_processing_config = post_processing_pb2.PostProcessing() | |
text_format.Merge(post_processing_text_proto, post_processing_config) | |
_, score_converter = post_processing_builder.build(post_processing_config) | |
self.assertEqual(score_converter.__name__, 'sigmoid_with_logit_scale') | |
def test_build_softmax_score_converter(self): | |
post_processing_text_proto = """ | |
score_converter: SOFTMAX | |
""" | |
post_processing_config = post_processing_pb2.PostProcessing() | |
text_format.Merge(post_processing_text_proto, post_processing_config) | |
_, score_converter = post_processing_builder.build(post_processing_config) | |
self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale') | |
def test_build_softmax_score_converter_with_temperature(self): | |
post_processing_text_proto = """ | |
score_converter: SOFTMAX | |
logit_scale: 2.0 | |
""" | |
post_processing_config = post_processing_pb2.PostProcessing() | |
text_format.Merge(post_processing_text_proto, post_processing_config) | |
_, score_converter = post_processing_builder.build(post_processing_config) | |
self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale') | |
def test_build_calibrator_with_nonempty_config(self): | |
"""Test that identity function used when no calibration_config specified.""" | |
# Calibration config maps all scores to 0.5. | |
post_processing_text_proto = """ | |
score_converter: SOFTMAX | |
calibration_config { | |
function_approximation { | |
x_y_pairs { | |
x_y_pair { | |
x: 0.0 | |
y: 0.5 | |
} | |
x_y_pair { | |
x: 1.0 | |
y: 0.5 | |
}}}}""" | |
post_processing_config = post_processing_pb2.PostProcessing() | |
text_format.Merge(post_processing_text_proto, post_processing_config) | |
_, calibrated_score_conversion_fn = post_processing_builder.build( | |
post_processing_config) | |
self.assertEqual(calibrated_score_conversion_fn.__name__, | |
'calibrate_with_function_approximation') | |
def graph_fn(): | |
input_scores = tf.constant([1, 1], tf.float32) | |
outputs = calibrated_score_conversion_fn(input_scores) | |
return outputs | |
calibrated_scores = self.execute_cpu(graph_fn, []) | |
self.assertAllClose(calibrated_scores, [0.5, 0.5]) | |
def test_build_temperature_scaling_calibrator(self): | |
post_processing_text_proto = """ | |
score_converter: SOFTMAX | |
calibration_config { | |
temperature_scaling_calibration { | |
scaler: 2.0 | |
}}""" | |
post_processing_config = post_processing_pb2.PostProcessing() | |
text_format.Merge(post_processing_text_proto, post_processing_config) | |
_, calibrated_score_conversion_fn = post_processing_builder.build( | |
post_processing_config) | |
self.assertEqual(calibrated_score_conversion_fn.__name__, | |
'calibrate_with_temperature_scaling_calibration') | |
def graph_fn(): | |
input_scores = tf.constant([1, 1], tf.float32) | |
outputs = calibrated_score_conversion_fn(input_scores) | |
return outputs | |
calibrated_scores = self.execute_cpu(graph_fn, []) | |
self.assertAllClose(calibrated_scores, [0.5, 0.5]) | |
if __name__ == '__main__': | |
tf.test.main() | |