Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for model_builder under TensorFlow 1.X.""" | |
import unittest | |
from absl.testing import parameterized | |
import tensorflow.compat.v1 as tf | |
from object_detection.builders import model_builder | |
from object_detection.builders import model_builder_test | |
from object_detection.meta_architectures import context_rcnn_meta_arch | |
from object_detection.meta_architectures import ssd_meta_arch | |
from object_detection.protos import losses_pb2 | |
from object_detection.utils import tf_version | |
class ModelBuilderTF1Test(model_builder_test.ModelBuilderTest): | |
def default_ssd_feature_extractor(self): | |
return 'ssd_resnet50_v1_fpn' | |
def default_faster_rcnn_feature_extractor(self): | |
return 'faster_rcnn_resnet101' | |
def ssd_feature_extractors(self): | |
return model_builder.SSD_FEATURE_EXTRACTOR_CLASS_MAP | |
def faster_rcnn_feature_extractors(self): | |
return model_builder.FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP | |
def test_create_context_rcnn_from_config_with_params(self, is_training): | |
model_proto = self.create_default_faster_rcnn_model_proto() | |
model_proto.faster_rcnn.context_config.attention_bottleneck_dimension = 10 | |
model_proto.faster_rcnn.context_config.attention_temperature = 0.5 | |
model = model_builder.build(model_proto, is_training=is_training) | |
self.assertIsInstance(model, context_rcnn_meta_arch.ContextRCNNMetaArch) | |
if __name__ == '__main__': | |
tf.test.main() | |