Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for dataset_builder.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import numpy as np | |
from six.moves import range | |
import tensorflow.compat.v1 as tf | |
from google.protobuf import text_format | |
from object_detection.builders import dataset_builder | |
from object_detection.core import standard_fields as fields | |
from object_detection.dataset_tools import seq_example_util | |
from object_detection.protos import input_reader_pb2 | |
from object_detection.utils import dataset_util | |
from object_detection.utils import test_case | |
# pylint: disable=g-import-not-at-top | |
try: | |
from tensorflow.contrib import lookup as contrib_lookup | |
except ImportError: | |
# TF 2.0 doesn't ship with contrib. | |
pass | |
# pylint: enable=g-import-not-at-top | |
def get_iterator_next_for_testing(dataset, is_tf2): | |
iterator = dataset.make_initializable_iterator() | |
if not is_tf2: | |
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer) | |
return iterator.get_next() | |
def _get_labelmap_path(): | |
"""Returns an absolute path to label map file.""" | |
parent_path = os.path.dirname(tf.resource_loader.get_data_files_path()) | |
return os.path.join(parent_path, 'data', | |
'pet_label_map.pbtxt') | |
class DatasetBuilderTest(test_case.TestCase): | |
def create_tf_record(self, has_additional_channels=False, num_shards=1, | |
num_examples_per_shard=1): | |
def dummy_jpeg_fn(): | |
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) | |
additional_channels_tensor = np.random.randint( | |
255, size=(4, 5, 1)).astype(np.uint8) | |
encoded_jpeg = tf.image.encode_jpeg(image_tensor) | |
encoded_additional_channels_jpeg = tf.image.encode_jpeg( | |
additional_channels_tensor) | |
return encoded_jpeg, encoded_additional_channels_jpeg | |
encoded_jpeg, encoded_additional_channels_jpeg = self.execute( | |
dummy_jpeg_fn, []) | |
tmp_dir = self.get_temp_dir() | |
flat_mask = (4 * 5) * [1.0] | |
for i in range(num_shards): | |
path = os.path.join(tmp_dir, '%05d.tfrecord' % i) | |
writer = tf.python_io.TFRecordWriter(path) | |
for j in range(num_examples_per_shard): | |
if num_shards > 1: | |
source_id = (str(i) + '_' + str(j)).encode() | |
else: | |
source_id = str(j).encode() | |
features = { | |
'image/source_id': dataset_util.bytes_feature(source_id), | |
'image/encoded': dataset_util.bytes_feature(encoded_jpeg), | |
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), | |
'image/height': dataset_util.int64_feature(4), | |
'image/width': dataset_util.int64_feature(5), | |
'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), | |
'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), | |
'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), | |
'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), | |
'image/object/class/label': dataset_util.int64_list_feature([2]), | |
'image/object/mask': dataset_util.float_list_feature(flat_mask), | |
} | |
if has_additional_channels: | |
additional_channels_key = 'image/additional_channels/encoded' | |
features[additional_channels_key] = dataset_util.bytes_list_feature( | |
[encoded_additional_channels_jpeg] * 2) | |
example = tf.train.Example(features=tf.train.Features(feature=features)) | |
writer.write(example.SerializeToString()) | |
writer.close() | |
return os.path.join(self.get_temp_dir(), '?????.tfrecord') | |
def _make_random_serialized_jpeg_images(self, num_frames, image_height, | |
image_width): | |
def graph_fn(): | |
images = tf.cast(tf.random.uniform( | |
[num_frames, image_height, image_width, 3], | |
maxval=256, | |
dtype=tf.int32), dtype=tf.uint8) | |
images_list = tf.unstack(images, axis=0) | |
encoded_images_list = [tf.io.encode_jpeg(image) for image in images_list] | |
return encoded_images_list | |
encoded_images = self.execute(graph_fn, []) | |
return encoded_images | |
def create_tf_record_sequence_example(self): | |
path = os.path.join(self.get_temp_dir(), 'seq_tfrecord') | |
writer = tf.python_io.TFRecordWriter(path) | |
num_frames = 4 | |
image_height = 4 | |
image_width = 5 | |
image_source_ids = [str(i) for i in range(num_frames)] | |
with self.test_session(): | |
encoded_images = self._make_random_serialized_jpeg_images( | |
num_frames, image_height, image_width) | |
sequence_example_serialized = seq_example_util.make_sequence_example( | |
dataset_name='video_dataset', | |
video_id='video', | |
encoded_images=encoded_images, | |
image_height=image_height, | |
image_width=image_width, | |
image_source_ids=image_source_ids, | |
image_format='JPEG', | |
is_annotated=[[1], [1], [1], [1]], | |
bboxes=[ | |
[[]], # Frame 0. | |
[[0., 0., 1., 1.]], # Frame 1. | |
[[0., 0., 1., 1.], | |
[0.1, 0.1, 0.2, 0.2]], # Frame 2. | |
[[]], # Frame 3. | |
], | |
label_strings=[ | |
[], # Frame 0. | |
['Abyssinian'], # Frame 1. | |
['Abyssinian', 'american_bulldog'], # Frame 2. | |
[], # Frame 3 | |
]).SerializeToString() | |
writer.write(sequence_example_serialized) | |
writer.close() | |
return path | |
def test_build_tf_record_input_reader(self): | |
tf_record_path = self.create_tf_record() | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
tf_record_input_reader {{ | |
input_path: '{0}' | |
}} | |
""".format(tf_record_path) | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
def graph_fn(): | |
return get_iterator_next_for_testing( | |
dataset_builder.build(input_reader_proto, batch_size=1), | |
self.is_tf2()) | |
output_dict = self.execute(graph_fn, []) | |
self.assertNotIn( | |
fields.InputDataFields.groundtruth_instance_masks, output_dict) | |
self.assertEqual((1, 4, 5, 3), | |
output_dict[fields.InputDataFields.image].shape) | |
self.assertAllEqual([[2]], | |
output_dict[fields.InputDataFields.groundtruth_classes]) | |
self.assertEqual( | |
(1, 1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) | |
self.assertAllEqual( | |
[0.0, 0.0, 1.0, 1.0], | |
output_dict[fields.InputDataFields.groundtruth_boxes][0][0]) | |
def get_mock_reduce_to_frame_fn(self): | |
def mock_reduce_to_frame_fn(dataset, dataset_map_fn, batch_size, config): | |
def get_frame(tensor_dict): | |
out_tensor_dict = {} | |
out_tensor_dict[fields.InputDataFields.source_id] = ( | |
tensor_dict[fields.InputDataFields.source_id][0]) | |
return out_tensor_dict | |
return dataset_map_fn(dataset, get_frame, batch_size, config) | |
return mock_reduce_to_frame_fn | |
def test_build_tf_record_input_reader_sequence_example_train(self): | |
tf_record_path = self.create_tf_record_sequence_example() | |
label_map_path = _get_labelmap_path() | |
input_type = 'TF_SEQUENCE_EXAMPLE' | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
input_type: {1} | |
tf_record_input_reader {{ | |
input_path: '{0}' | |
}} | |
""".format(tf_record_path, input_type) | |
input_reader_proto = input_reader_pb2.InputReader() | |
input_reader_proto.label_map_path = label_map_path | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
reduce_to_frame_fn = self.get_mock_reduce_to_frame_fn() | |
def graph_fn(): | |
return get_iterator_next_for_testing( | |
dataset_builder.build(input_reader_proto, batch_size=1, | |
reduce_to_frame_fn=reduce_to_frame_fn), | |
self.is_tf2()) | |
output_dict = self.execute(graph_fn, []) | |
self.assertEqual((1,), | |
output_dict[fields.InputDataFields.source_id].shape) | |
def test_build_tf_record_input_reader_sequence_example_test(self): | |
tf_record_path = self.create_tf_record_sequence_example() | |
input_type = 'TF_SEQUENCE_EXAMPLE' | |
label_map_path = _get_labelmap_path() | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
input_type: {1} | |
tf_record_input_reader {{ | |
input_path: '{0}' | |
}} | |
""".format(tf_record_path, input_type) | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
input_reader_proto.label_map_path = label_map_path | |
reduce_to_frame_fn = self.get_mock_reduce_to_frame_fn() | |
def graph_fn(): | |
return get_iterator_next_for_testing( | |
dataset_builder.build(input_reader_proto, batch_size=1, | |
reduce_to_frame_fn=reduce_to_frame_fn), | |
self.is_tf2()) | |
output_dict = self.execute(graph_fn, []) | |
self.assertEqual((1,), | |
output_dict[fields.InputDataFields.source_id].shape) | |
def test_build_tf_record_input_reader_and_load_instance_masks(self): | |
tf_record_path = self.create_tf_record() | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
load_instance_masks: true | |
tf_record_input_reader {{ | |
input_path: '{0}' | |
}} | |
""".format(tf_record_path) | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
def graph_fn(): | |
return get_iterator_next_for_testing( | |
dataset_builder.build(input_reader_proto, batch_size=1), | |
self.is_tf2() | |
) | |
output_dict = self.execute(graph_fn, []) | |
self.assertAllEqual( | |
(1, 1, 4, 5), | |
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape) | |
def test_build_tf_record_input_reader_with_batch_size_two(self): | |
tf_record_path = self.create_tf_record() | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
tf_record_input_reader {{ | |
input_path: '{0}' | |
}} | |
""".format(tf_record_path) | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
def one_hot_class_encoding_fn(tensor_dict): | |
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot( | |
tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3) | |
return tensor_dict | |
def graph_fn(): | |
return dataset_builder.make_initializable_iterator( | |
dataset_builder.build( | |
input_reader_proto, | |
transform_input_data_fn=one_hot_class_encoding_fn, | |
batch_size=2)).get_next() | |
output_dict = self.execute(graph_fn, []) | |
self.assertAllEqual([2, 4, 5, 3], | |
output_dict[fields.InputDataFields.image].shape) | |
self.assertAllEqual( | |
[2, 1, 3], | |
output_dict[fields.InputDataFields.groundtruth_classes].shape) | |
self.assertAllEqual( | |
[2, 1, 4], output_dict[fields.InputDataFields.groundtruth_boxes].shape) | |
self.assertAllEqual([[[0.0, 0.0, 1.0, 1.0]], [[0.0, 0.0, 1.0, 1.0]]], | |
output_dict[fields.InputDataFields.groundtruth_boxes]) | |
def test_build_tf_record_input_reader_with_batch_size_two_and_masks(self): | |
tf_record_path = self.create_tf_record() | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
load_instance_masks: true | |
tf_record_input_reader {{ | |
input_path: '{0}' | |
}} | |
""".format(tf_record_path) | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
def one_hot_class_encoding_fn(tensor_dict): | |
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot( | |
tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3) | |
return tensor_dict | |
def graph_fn(): | |
return dataset_builder.make_initializable_iterator( | |
dataset_builder.build( | |
input_reader_proto, | |
transform_input_data_fn=one_hot_class_encoding_fn, | |
batch_size=2)).get_next() | |
output_dict = self.execute(graph_fn, []) | |
self.assertAllEqual( | |
[2, 1, 4, 5], | |
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape) | |
def test_raises_error_with_no_input_paths(self): | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
load_instance_masks: true | |
""" | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
with self.assertRaises(ValueError): | |
dataset_builder.build(input_reader_proto, batch_size=1) | |
def test_sample_all_data(self): | |
tf_record_path = self.create_tf_record(num_examples_per_shard=2) | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
sample_1_of_n_examples: 1 | |
tf_record_input_reader {{ | |
input_path: '{0}' | |
}} | |
""".format(tf_record_path) | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
def graph_fn(): | |
dataset = dataset_builder.build(input_reader_proto, batch_size=1) | |
sample1_ds = dataset.take(1) | |
sample2_ds = dataset.skip(1) | |
iter1 = dataset_builder.make_initializable_iterator(sample1_ds) | |
iter2 = dataset_builder.make_initializable_iterator(sample2_ds) | |
return iter1.get_next(), iter2.get_next() | |
output_dict1, output_dict2 = self.execute(graph_fn, []) | |
self.assertAllEqual(['0'], output_dict1[fields.InputDataFields.source_id]) | |
self.assertEqual([b'1'], output_dict2[fields.InputDataFields.source_id]) | |
def test_sample_one_of_n_shards(self): | |
tf_record_path = self.create_tf_record(num_examples_per_shard=4) | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
sample_1_of_n_examples: 2 | |
tf_record_input_reader {{ | |
input_path: '{0}' | |
}} | |
""".format(tf_record_path) | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
def graph_fn(): | |
dataset = dataset_builder.build(input_reader_proto, batch_size=1) | |
sample1_ds = dataset.take(1) | |
sample2_ds = dataset.skip(1) | |
iter1 = dataset_builder.make_initializable_iterator(sample1_ds) | |
iter2 = dataset_builder.make_initializable_iterator(sample2_ds) | |
return iter1.get_next(), iter2.get_next() | |
output_dict1, output_dict2 = self.execute(graph_fn, []) | |
self.assertAllEqual([b'0'], output_dict1[fields.InputDataFields.source_id]) | |
self.assertEqual([b'2'], output_dict2[fields.InputDataFields.source_id]) | |
def test_no_input_context(self): | |
"""Test that all samples are read with no input context given.""" | |
tf_record_path = self.create_tf_record(num_examples_per_shard=16, | |
num_shards=2) | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
num_epochs: 1 | |
tf_record_input_reader {{ | |
input_path: '{0}' | |
}} | |
""".format(tf_record_path) | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
for i in range(4): | |
# pylint:disable=cell-var-from-loop | |
def graph_fn(): | |
dataset = dataset_builder.build(input_reader_proto, batch_size=8) | |
dataset = dataset.skip(i) | |
return get_iterator_next_for_testing(dataset, self.is_tf2()) | |
batch = self.execute(graph_fn, []) | |
self.assertEqual(batch['image'].shape, (8, 4, 5, 3)) | |
def graph_fn_last_batch(): | |
dataset = dataset_builder.build(input_reader_proto, batch_size=8) | |
dataset = dataset.skip(4) | |
return get_iterator_next_for_testing(dataset, self.is_tf2()) | |
self.assertRaises(tf.errors.OutOfRangeError, self.execute, | |
compute_fn=graph_fn_last_batch, inputs=[]) | |
def test_with_input_context(self): | |
"""Test that a subset is read with input context given.""" | |
tf_record_path = self.create_tf_record(num_examples_per_shard=16, | |
num_shards=2) | |
input_reader_text_proto = """ | |
shuffle: false | |
num_readers: 1 | |
num_epochs: 1 | |
tf_record_input_reader {{ | |
input_path: '{0}' | |
}} | |
""".format(tf_record_path) | |
input_reader_proto = input_reader_pb2.InputReader() | |
text_format.Merge(input_reader_text_proto, input_reader_proto) | |
input_context = tf.distribute.InputContext( | |
num_input_pipelines=2, input_pipeline_id=0, num_replicas_in_sync=4 | |
) | |
for i in range(8): | |
# pylint:disable=cell-var-from-loop | |
def graph_fn(): | |
dataset = dataset_builder.build(input_reader_proto, batch_size=8, | |
input_context=input_context) | |
dataset = dataset.skip(i) | |
return get_iterator_next_for_testing(dataset, self.is_tf2()) | |
batch = self.execute(graph_fn, []) | |
self.assertEqual(batch['image'].shape, (2, 4, 5, 3)) | |
def graph_fn_last_batch(): | |
dataset = dataset_builder.build(input_reader_proto, batch_size=8, | |
input_context=input_context) | |
dataset = dataset.skip(8) | |
return get_iterator_next_for_testing(dataset, self.is_tf2()) | |
self.assertRaises(tf.errors.OutOfRangeError, self.execute, | |
compute_fn=graph_fn_last_batch, inputs=[]) | |
class ReadDatasetTest(test_case.TestCase): | |
def setUp(self): | |
self._path_template = os.path.join(self.get_temp_dir(), 'examples_%s.txt') | |
for i in range(5): | |
path = self._path_template % i | |
with tf.gfile.Open(path, 'wb') as f: | |
f.write('\n'.join([str(i + 1), str((i + 1) * 10)])) | |
self._shuffle_path_template = os.path.join(self.get_temp_dir(), | |
'shuffle_%s.txt') | |
for i in range(2): | |
path = self._shuffle_path_template % i | |
with tf.gfile.Open(path, 'wb') as f: | |
f.write('\n'.join([str(i)] * 5)) | |
super(ReadDatasetTest, self).setUp() | |
def _get_dataset_next(self, files, config, batch_size, num_batches_skip=0): | |
def decode_func(value): | |
return [tf.string_to_number(value, out_type=tf.int32)] | |
dataset = dataset_builder.read_dataset(tf.data.TextLineDataset, files, | |
config) | |
dataset = dataset.map(decode_func) | |
dataset = dataset.batch(batch_size) | |
if num_batches_skip > 0: | |
dataset = dataset.skip(num_batches_skip) | |
return get_iterator_next_for_testing(dataset, self.is_tf2()) | |
def test_make_initializable_iterator_with_hashTable(self): | |
def graph_fn(): | |
keys = [1, 0, -1] | |
dataset = tf.data.Dataset.from_tensor_slices([[1, 2, -1, 5]]) | |
try: | |
# Dynamically try to load the tf v2 lookup, falling back to contrib | |
lookup = tf.compat.v2.lookup | |
hash_table_class = tf.compat.v2.lookup.StaticHashTable | |
except AttributeError: | |
lookup = contrib_lookup | |
hash_table_class = contrib_lookup.HashTable | |
table = hash_table_class( | |
initializer=lookup.KeyValueTensorInitializer( | |
keys=keys, values=list(reversed(keys))), | |
default_value=100) | |
dataset = dataset.map(table.lookup) | |
return dataset_builder.make_initializable_iterator(dataset).get_next() | |
result = self.execute(graph_fn, []) | |
self.assertAllEqual(result, [-1, 100, 1, 100]) | |
def test_read_dataset(self): | |
config = input_reader_pb2.InputReader() | |
config.num_readers = 1 | |
config.shuffle = False | |
def graph_fn(): | |
return self._get_dataset_next( | |
[self._path_template % '*'], config, batch_size=20) | |
data = self.execute(graph_fn, []) | |
# Note that the execute function extracts single outputs if the return | |
# value is of size 1. | |
self.assertCountEqual( | |
data, [ | |
1, 10, 2, 20, 3, 30, 4, 40, 5, 50, 1, 10, 2, 20, 3, 30, 4, 40, 5, | |
50 | |
]) | |
def test_reduce_num_reader(self): | |
config = input_reader_pb2.InputReader() | |
config.num_readers = 10 | |
config.shuffle = False | |
def graph_fn(): | |
return self._get_dataset_next( | |
[self._path_template % '*'], config, batch_size=20) | |
data = self.execute(graph_fn, []) | |
# Note that the execute function extracts single outputs if the return | |
# value is of size 1. | |
self.assertCountEqual( | |
data, [ | |
1, 10, 2, 20, 3, 30, 4, 40, 5, 50, 1, 10, 2, 20, 3, 30, 4, 40, 5, | |
50 | |
]) | |
def test_enable_shuffle(self): | |
config = input_reader_pb2.InputReader() | |
config.num_readers = 1 | |
config.shuffle = True | |
tf.set_random_seed(1) # Set graph level seed. | |
def graph_fn(): | |
return self._get_dataset_next( | |
[self._shuffle_path_template % '*'], config, batch_size=10) | |
expected_non_shuffle_output = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] | |
data = self.execute(graph_fn, []) | |
self.assertTrue( | |
np.any(np.not_equal(data, expected_non_shuffle_output))) | |
def test_disable_shuffle_(self): | |
config = input_reader_pb2.InputReader() | |
config.num_readers = 1 | |
config.shuffle = False | |
def graph_fn(): | |
return self._get_dataset_next( | |
[self._shuffle_path_template % '*'], config, batch_size=10) | |
expected_non_shuffle_output1 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] | |
expected_non_shuffle_output2 = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0] | |
# Note that the execute function extracts single outputs if the return | |
# value is of size 1. | |
data = self.execute(graph_fn, []) | |
self.assertTrue(all(data == expected_non_shuffle_output1) or | |
all(data == expected_non_shuffle_output2)) | |
def test_read_dataset_single_epoch(self): | |
config = input_reader_pb2.InputReader() | |
config.num_epochs = 1 | |
config.num_readers = 1 | |
config.shuffle = False | |
def graph_fn(): | |
return self._get_dataset_next( | |
[self._path_template % '0'], config, batch_size=30) | |
data = self.execute(graph_fn, []) | |
# Note that the execute function extracts single outputs if the return | |
# value is of size 1. | |
self.assertAllEqual(data, [1, 10]) | |
# First batch will retrieve as much as it can, second batch will fail. | |
def graph_fn_second_batch(): | |
return self._get_dataset_next( | |
[self._path_template % '0'], config, batch_size=30, | |
num_batches_skip=1) | |
self.assertRaises(tf.errors.OutOfRangeError, self.execute, | |
compute_fn=graph_fn_second_batch, inputs=[]) | |
if __name__ == '__main__': | |
tf.test.main() | |