NCTCMumbai's picture
Upload 2571 files
0b8359d
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Code for setting up the network for CMP.
Sets up the mapper and the planner.
"""
import sys, os, numpy as np
import matplotlib.pyplot as plt
import copy
import argparse, pprint
import time
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow.contrib.slim import arg_scope
import logging
from tensorflow.python.platform import app
from tensorflow.python.platform import flags
from src import utils
import src.file_utils as fu
import tfcode.nav_utils as nu
import tfcode.cmp_utils as cu
import tfcode.cmp_summary as cmp_s
from tfcode import tf_utils
value_iteration_network = cu.value_iteration_network
rotate_preds = cu.rotate_preds
deconv = cu.deconv
get_visual_frustum = cu.get_visual_frustum
fr_v2 = cu.fr_v2
setup_train_step_kwargs = nu.default_train_step_kwargs
compute_losses_multi_or = nu.compute_losses_multi_or
get_repr_from_image = nu.get_repr_from_image
_save_d_at_t = nu.save_d_at_t
_save_all = nu.save_all
_eval_ap = nu.eval_ap
_eval_dist = nu.eval_dist
_plot_trajectories = nu.plot_trajectories
_vis_readout_maps = cmp_s._vis_readout_maps
_vis = cmp_s._vis
_summary_vis = cmp_s._summary_vis
_summary_readout_maps = cmp_s._summary_readout_maps
_add_summaries = cmp_s._add_summaries
def _inputs(problem):
# Set up inputs.
with tf.name_scope('inputs'):
inputs = []
inputs.append(('orig_maps', tf.float32,
(problem.batch_size, 1, None, None, 1)))
inputs.append(('goal_loc', tf.float32,
(problem.batch_size, problem.num_goals, 2)))
common_input_data, _ = tf_utils.setup_inputs(inputs)
inputs = []
if problem.input_type == 'vision':
# Multiple images from an array of cameras.
inputs.append(('imgs', tf.float32,
(problem.batch_size, None, len(problem.aux_delta_thetas)+1,
problem.img_height, problem.img_width,
problem.img_channels)))
elif problem.input_type == 'analytical_counts':
for i in range(len(problem.map_crop_sizes)):
inputs.append(('analytical_counts_{:d}'.format(i), tf.float32,
(problem.batch_size, None, problem.map_crop_sizes[i],
problem.map_crop_sizes[i], problem.map_channels)))
if problem.outputs.readout_maps:
for i in range(len(problem.readout_maps_crop_sizes)):
inputs.append(('readout_maps_{:d}'.format(i), tf.float32,
(problem.batch_size, None,
problem.readout_maps_crop_sizes[i],
problem.readout_maps_crop_sizes[i],
problem.readout_maps_channels)))
for i in range(len(problem.map_crop_sizes)):
inputs.append(('ego_goal_imgs_{:d}'.format(i), tf.float32,
(problem.batch_size, None, problem.map_crop_sizes[i],
problem.map_crop_sizes[i], problem.goal_channels)))
for s in ['sum_num', 'sum_denom', 'max_denom']:
inputs.append(('running_'+s+'_{:d}'.format(i), tf.float32,
(problem.batch_size, 1, problem.map_crop_sizes[i],
problem.map_crop_sizes[i], problem.map_channels)))
inputs.append(('incremental_locs', tf.float32,
(problem.batch_size, None, 2)))
inputs.append(('incremental_thetas', tf.float32,
(problem.batch_size, None, 1)))
inputs.append(('step_number', tf.int32, (1, None, 1)))
inputs.append(('node_ids', tf.int32, (problem.batch_size, None,
problem.node_ids_dim)))
inputs.append(('perturbs', tf.float32, (problem.batch_size, None,
problem.perturbs_dim)))
# For plotting result plots
inputs.append(('loc_on_map', tf.float32, (problem.batch_size, None, 2)))
inputs.append(('gt_dist_to_goal', tf.float32, (problem.batch_size, None, 1)))
step_input_data, _ = tf_utils.setup_inputs(inputs)
inputs = []
inputs.append(('action', tf.int32, (problem.batch_size, None, problem.num_actions)))
train_data, _ = tf_utils.setup_inputs(inputs)
train_data.update(step_input_data)
train_data.update(common_input_data)
return common_input_data, step_input_data, train_data
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
kernel_size, batch_norm_is_training_op, wt_decay):
multi_scale_belief = tf.stop_gradient(multi_scale_belief)
with tf.variable_scope('readout_maps_deconv'):
x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
wt_decay=wt_decay, neurons=num_neurons, strides=strides,
layers_per_block=layers_per_block, kernel_size=kernel_size,
conv_fn=slim.conv2d_transpose, offset=0,
name='readout_maps_deconv')
probs = tf.sigmoid(x)
return x, probs
def running_combine(fss_logits, confs_probs, incremental_locs,
incremental_thetas, previous_sum_num, previous_sum_denom,
previous_max_denom, map_size, num_steps):
# fss_logits is B x N x H x W x C
# confs_logits is B x N x H x W x C
# incremental_locs is B x N x 2
# incremental_thetas is B x N x 1
# previous_sum_num etc is B x 1 x H x W x C
with tf.name_scope('combine_{:d}'.format(num_steps)):
running_sum_nums_ = []; running_sum_denoms_ = [];
running_max_denoms_ = [];
fss_logits_ = tf.unstack(fss_logits, axis=1, num=num_steps)
confs_probs_ = tf.unstack(confs_probs, axis=1, num=num_steps)
incremental_locs_ = tf.unstack(incremental_locs, axis=1, num=num_steps)
incremental_thetas_ = tf.unstack(incremental_thetas, axis=1, num=num_steps)
running_sum_num = tf.unstack(previous_sum_num, axis=1, num=1)[0]
running_sum_denom = tf.unstack(previous_sum_denom, axis=1, num=1)[0]
running_max_denom = tf.unstack(previous_max_denom, axis=1, num=1)[0]
for i in range(num_steps):
# Rotate the previous running_num and running_denom
running_sum_num, running_sum_denom, running_max_denom = rotate_preds(
incremental_locs_[i], incremental_thetas_[i], map_size,
[running_sum_num, running_sum_denom, running_max_denom],
output_valid_mask=False)[0]
# print i, num_steps, running_sum_num.get_shape().as_list()
running_sum_num = running_sum_num + fss_logits_[i] * confs_probs_[i]
running_sum_denom = running_sum_denom + confs_probs_[i]
running_max_denom = tf.maximum(running_max_denom, confs_probs_[i])
running_sum_nums_.append(running_sum_num)
running_sum_denoms_.append(running_sum_denom)
running_max_denoms_.append(running_max_denom)
running_sum_nums = tf.stack(running_sum_nums_, axis=1)
running_sum_denoms = tf.stack(running_sum_denoms_, axis=1)
running_max_denoms = tf.stack(running_max_denoms_, axis=1)
return running_sum_nums, running_sum_denoms, running_max_denoms
def get_map_from_images(imgs, mapper_arch, task_params, freeze_conv, wt_decay,
is_training, batch_norm_is_training_op, num_maps,
split_maps=True):
# Hit image with a resnet.
n_views = len(task_params.aux_delta_thetas) + 1
out = utils.Foo()
images_reshaped = tf.reshape(imgs,
shape=[-1, task_params.img_height,
task_params.img_width,
task_params.img_channels], name='re_image')
x, out.vars_to_restore = get_repr_from_image(
images_reshaped, task_params.modalities, task_params.data_augment,
mapper_arch.encoder, freeze_conv, wt_decay, is_training)
# Reshape into nice things so that these can be accumulated over time steps
# for faster backprop.
sh_before = x.get_shape().as_list()
out.encoder_output = tf.reshape(x, shape=[task_params.batch_size, -1, n_views] + sh_before[1:])
x = tf.reshape(out.encoder_output, shape=[-1] + sh_before[1:])
# Add a layer to reduce dimensions for a fc layer.
if mapper_arch.dim_reduce_neurons > 0:
ks = 1; neurons = mapper_arch.dim_reduce_neurons;
init_var = np.sqrt(2.0/(ks**2)/neurons)
batch_norm_param = mapper_arch.batch_norm_param
batch_norm_param['is_training'] = batch_norm_is_training_op
out.conv_feat = slim.conv2d(x, neurons, kernel_size=ks, stride=1,
normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_param,
padding='SAME', scope='dim_reduce',
weights_regularizer=slim.l2_regularizer(wt_decay),
weights_initializer=tf.random_normal_initializer(stddev=init_var))
reshape_conv_feat = slim.flatten(out.conv_feat)
sh = reshape_conv_feat.get_shape().as_list()
out.reshape_conv_feat = tf.reshape(reshape_conv_feat, shape=[-1, sh[1]*n_views])
with tf.variable_scope('fc'):
# Fully connected layers to compute the representation in top-view space.
fc_batch_norm_param = {'center': True, 'scale': True,
'activation_fn':tf.nn.relu,
'is_training': batch_norm_is_training_op}
f = out.reshape_conv_feat
out_neurons = (mapper_arch.fc_out_size**2)*mapper_arch.fc_out_neurons
neurons = mapper_arch.fc_neurons + [out_neurons]
f, _ = tf_utils.fc_network(f, neurons=neurons, wt_decay=wt_decay,
name='fc', offset=0,
batch_norm_param=fc_batch_norm_param,
is_training=is_training,
dropout_ratio=mapper_arch.fc_dropout)
f = tf.reshape(f, shape=[-1, mapper_arch.fc_out_size,
mapper_arch.fc_out_size,
mapper_arch.fc_out_neurons], name='re_fc')
# Use pool5 to predict the free space map via deconv layers.
with tf.variable_scope('deconv'):
x, outs = deconv(f, batch_norm_is_training_op, wt_decay=wt_decay,
neurons=mapper_arch.deconv_neurons,
strides=mapper_arch.deconv_strides,
layers_per_block=mapper_arch.deconv_layers_per_block,
kernel_size=mapper_arch.deconv_kernel_size,
conv_fn=slim.conv2d_transpose, offset=0, name='deconv')
# Reshape x the right way.
sh = x.get_shape().as_list()
x = tf.reshape(x, shape=[task_params.batch_size, -1] + sh[1:])
out.deconv_output = x
# Separate out the map and the confidence predictions, pass the confidence
# through a sigmoid.
if split_maps:
with tf.name_scope('split'):
out_all = tf.split(value=x, axis=4, num_or_size_splits=2*num_maps)
out.fss_logits = out_all[:num_maps]
out.confs_logits = out_all[num_maps:]
with tf.name_scope('sigmoid'):
out.confs_probs = [tf.nn.sigmoid(x) for x in out.confs_logits]
return out
def setup_to_run(m, args, is_training, batch_norm_is_training, summary_mode):
assert(args.arch.multi_scale), 'removed support for old single scale code.'
# Set up the model.
tf.set_random_seed(args.solver.seed)
task_params = args.navtask.task_params
batch_norm_is_training_op = \
tf.placeholder_with_default(batch_norm_is_training, shape=[],
name='batch_norm_is_training_op')
# Setup the inputs
m.input_tensors = {}
m.train_ops = {}
m.input_tensors['common'], m.input_tensors['step'], m.input_tensors['train'] = \
_inputs(task_params)
m.init_fn = None
if task_params.input_type == 'vision':
m.vision_ops = get_map_from_images(
m.input_tensors['step']['imgs'], args.mapper_arch,
task_params, args.solver.freeze_conv,
args.solver.wt_decay, is_training, batch_norm_is_training_op,
num_maps=len(task_params.map_crop_sizes))
# Load variables from snapshot if needed.
if args.solver.pretrained_path is not None:
m.init_fn = slim.assign_from_checkpoint_fn(args.solver.pretrained_path,
m.vision_ops.vars_to_restore)
# Set up caching of vision features if needed.
if args.solver.freeze_conv:
m.train_ops['step_data_cache'] = [m.vision_ops.encoder_output]
else:
m.train_ops['step_data_cache'] = []
# Set up blobs that are needed for the computation in rest of the graph.
m.ego_map_ops = m.vision_ops.fss_logits
m.coverage_ops = m.vision_ops.confs_probs
# Zero pad these to make them same size as what the planner expects.
for i in range(len(m.ego_map_ops)):
if args.mapper_arch.pad_map_with_zeros_each[i] > 0:
paddings = np.zeros((5,2), dtype=np.int32)
paddings[2:4,:] = args.mapper_arch.pad_map_with_zeros_each[i]
paddings_op = tf.constant(paddings, dtype=tf.int32)
m.ego_map_ops[i] = tf.pad(m.ego_map_ops[i], paddings=paddings_op)
m.coverage_ops[i] = tf.pad(m.coverage_ops[i], paddings=paddings_op)
elif task_params.input_type == 'analytical_counts':
m.ego_map_ops = []; m.coverage_ops = []
for i in range(len(task_params.map_crop_sizes)):
ego_map_op = m.input_tensors['step']['analytical_counts_{:d}'.format(i)]
coverage_op = tf.cast(tf.greater_equal(
tf.reduce_max(ego_map_op, reduction_indices=[4],
keep_dims=True), 1), tf.float32)
coverage_op = tf.ones_like(ego_map_op) * coverage_op
m.ego_map_ops.append(ego_map_op)
m.coverage_ops.append(coverage_op)
m.train_ops['step_data_cache'] = []
num_steps = task_params.num_steps
num_goals = task_params.num_goals
map_crop_size_ops = []
for map_crop_size in task_params.map_crop_sizes:
map_crop_size_ops.append(tf.constant(map_crop_size, dtype=tf.int32, shape=(2,)))
with tf.name_scope('check_size'):
is_single_step = tf.equal(tf.unstack(tf.shape(m.ego_map_ops[0]), num=5)[1], 1)
fr_ops = []; value_ops = [];
fr_intermediate_ops = []; value_intermediate_ops = [];
crop_value_ops = [];
resize_crop_value_ops = [];
confs = []; occupancys = [];
previous_value_op = None
updated_state = []; state_names = [];
for i in range(len(task_params.map_crop_sizes)):
map_crop_size = task_params.map_crop_sizes[i]
with tf.variable_scope('scale_{:d}'.format(i)):
# Accumulate the map.
fn = lambda ns: running_combine(
m.ego_map_ops[i],
m.coverage_ops[i],
m.input_tensors['step']['incremental_locs'] * task_params.map_scales[i],
m.input_tensors['step']['incremental_thetas'],
m.input_tensors['step']['running_sum_num_{:d}'.format(i)],
m.input_tensors['step']['running_sum_denom_{:d}'.format(i)],
m.input_tensors['step']['running_max_denom_{:d}'.format(i)],
map_crop_size, ns)
running_sum_num, running_sum_denom, running_max_denom = \
tf.cond(is_single_step, lambda: fn(1), lambda: fn(num_steps*num_goals))
updated_state += [running_sum_num, running_sum_denom, running_max_denom]
state_names += ['running_sum_num_{:d}'.format(i),
'running_sum_denom_{:d}'.format(i),
'running_max_denom_{:d}'.format(i)]
# Concat the accumulated map and goal
occupancy = running_sum_num / tf.maximum(running_sum_denom, 0.001)
conf = running_max_denom
# print occupancy.get_shape().as_list()
# Concat occupancy, how much occupied and goal.
with tf.name_scope('concat'):
sh = [-1, map_crop_size, map_crop_size, task_params.map_channels]
occupancy = tf.reshape(occupancy, shape=sh)
conf = tf.reshape(conf, shape=sh)
sh = [-1, map_crop_size, map_crop_size, task_params.goal_channels]
goal = tf.reshape(m.input_tensors['step']['ego_goal_imgs_{:d}'.format(i)], shape=sh)
to_concat = [occupancy, conf, goal]
if previous_value_op is not None:
to_concat.append(previous_value_op)
x = tf.concat(to_concat, 3)
# Pass the map, previous rewards and the goal through a few convolutional
# layers to get fR.
fr_op, fr_intermediate_op = fr_v2(
x, output_neurons=args.arch.fr_neurons,
inside_neurons=args.arch.fr_inside_neurons,
is_training=batch_norm_is_training_op, name='fr',
wt_decay=args.solver.wt_decay, stride=args.arch.fr_stride)
# Do Value Iteration on the fR
if args.arch.vin_num_iters > 0:
value_op, value_intermediate_op = value_iteration_network(
fr_op, num_iters=args.arch.vin_num_iters,
val_neurons=args.arch.vin_val_neurons,
action_neurons=args.arch.vin_action_neurons,
kernel_size=args.arch.vin_ks, share_wts=args.arch.vin_share_wts,
name='vin', wt_decay=args.solver.wt_decay)
else:
value_op = fr_op
value_intermediate_op = []
# Crop out and upsample the previous value map.
remove = args.arch.crop_remove_each
if remove > 0:
crop_value_op = value_op[:, remove:-remove, remove:-remove,:]
else:
crop_value_op = value_op
crop_value_op = tf.reshape(crop_value_op, shape=[-1, args.arch.value_crop_size,
args.arch.value_crop_size,
args.arch.vin_val_neurons])
if i < len(task_params.map_crop_sizes)-1:
# Reshape it to shape of the next scale.
previous_value_op = tf.image.resize_bilinear(crop_value_op,
map_crop_size_ops[i+1],
align_corners=True)
resize_crop_value_ops.append(previous_value_op)
occupancys.append(occupancy)
confs.append(conf)
value_ops.append(value_op)
crop_value_ops.append(crop_value_op)
fr_ops.append(fr_op)
fr_intermediate_ops.append(fr_intermediate_op)
m.value_ops = value_ops
m.value_intermediate_ops = value_intermediate_ops
m.fr_ops = fr_ops
m.fr_intermediate_ops = fr_intermediate_ops
m.final_value_op = crop_value_op
m.crop_value_ops = crop_value_ops
m.resize_crop_value_ops = resize_crop_value_ops
m.confs = confs
m.occupancys = occupancys
sh = [-1, args.arch.vin_val_neurons*((args.arch.value_crop_size)**2)]
m.value_features_op = tf.reshape(m.final_value_op, sh, name='reshape_value_op')
# Determine what action to take.
with tf.variable_scope('action_pred'):
batch_norm_param = args.arch.pred_batch_norm_param
if batch_norm_param is not None:
batch_norm_param['is_training'] = batch_norm_is_training_op
m.action_logits_op, _ = tf_utils.fc_network(
m.value_features_op, neurons=args.arch.pred_neurons,
wt_decay=args.solver.wt_decay, name='pred', offset=0,
num_pred=task_params.num_actions,
batch_norm_param=batch_norm_param)
m.action_prob_op = tf.nn.softmax(m.action_logits_op)
init_state = tf.constant(0., dtype=tf.float32, shape=[
task_params.batch_size, 1, map_crop_size, map_crop_size,
task_params.map_channels])
m.train_ops['state_names'] = state_names
m.train_ops['updated_state'] = updated_state
m.train_ops['init_state'] = [init_state for _ in updated_state]
m.train_ops['step'] = m.action_prob_op
m.train_ops['common'] = [m.input_tensors['common']['orig_maps'],
m.input_tensors['common']['goal_loc']]
m.train_ops['batch_norm_is_training_op'] = batch_norm_is_training_op
m.loss_ops = []; m.loss_ops_names = [];
if args.arch.readout_maps:
with tf.name_scope('readout_maps'):
all_occupancys = tf.concat(m.occupancys + m.confs, 3)
readout_maps, probs = readout_general(
all_occupancys, num_neurons=args.arch.rom_arch.num_neurons,
strides=args.arch.rom_arch.strides,
layers_per_block=args.arch.rom_arch.layers_per_block,
kernel_size=args.arch.rom_arch.kernel_size,
batch_norm_is_training_op=batch_norm_is_training_op,
wt_decay=args.solver.wt_decay)
gt_ego_maps = [m.input_tensors['step']['readout_maps_{:d}'.format(i)]
for i in range(len(task_params.readout_maps_crop_sizes))]
m.readout_maps_gt = tf.concat(gt_ego_maps, 4)
gt_shape = tf.shape(m.readout_maps_gt)
m.readout_maps_logits = tf.reshape(readout_maps, gt_shape)
m.readout_maps_probs = tf.reshape(probs, gt_shape)
# Add a loss op
m.readout_maps_loss_op = tf.losses.sigmoid_cross_entropy(
tf.reshape(m.readout_maps_gt, [-1, len(task_params.readout_maps_crop_sizes)]),
tf.reshape(readout_maps, [-1, len(task_params.readout_maps_crop_sizes)]),
scope='loss')
m.readout_maps_loss_op = 10.*m.readout_maps_loss_op
ewma_decay = 0.99 if is_training else 0.0
weight = tf.ones_like(m.input_tensors['train']['action'], dtype=tf.float32,
name='weight')
m.reg_loss_op, m.data_loss_op, m.total_loss_op, m.acc_ops = \
compute_losses_multi_or(m.action_logits_op,
m.input_tensors['train']['action'], weights=weight,
num_actions=task_params.num_actions,
data_loss_wt=args.solver.data_loss_wt,
reg_loss_wt=args.solver.reg_loss_wt,
ewma_decay=ewma_decay)
if args.arch.readout_maps:
m.total_loss_op = m.total_loss_op + m.readout_maps_loss_op
m.loss_ops += [m.readout_maps_loss_op]
m.loss_ops_names += ['readout_maps_loss']
m.loss_ops += [m.reg_loss_op, m.data_loss_op, m.total_loss_op]
m.loss_ops_names += ['reg_loss', 'data_loss', 'total_loss']
if args.solver.freeze_conv:
vars_to_optimize = list(set(tf.trainable_variables()) -
set(m.vision_ops.vars_to_restore))
else:
vars_to_optimize = None
m.lr_op, m.global_step_op, m.train_op, m.should_stop_op, m.optimizer, \
m.sync_optimizer = tf_utils.setup_training(
m.total_loss_op,
args.solver.initial_learning_rate,
args.solver.steps_per_decay,
args.solver.learning_rate_decay,
args.solver.momentum,
args.solver.max_steps,
args.solver.sync,
args.solver.adjust_lr_sync,
args.solver.num_workers,
args.solver.task,
vars_to_optimize=vars_to_optimize,
clip_gradient_norm=args.solver.clip_gradient_norm,
typ=args.solver.typ, momentum2=args.solver.momentum2,
adam_eps=args.solver.adam_eps)
if args.arch.sample_gt_prob_type == 'inverse_sigmoid_decay':
m.sample_gt_prob_op = tf_utils.inverse_sigmoid_decay(args.arch.isd_k,
m.global_step_op)
elif args.arch.sample_gt_prob_type == 'zero':
m.sample_gt_prob_op = tf.constant(-1.0, dtype=tf.float32)
elif args.arch.sample_gt_prob_type.split('_')[0] == 'step':
step = int(args.arch.sample_gt_prob_type.split('_')[1])
m.sample_gt_prob_op = tf_utils.step_gt_prob(
step, m.input_tensors['step']['step_number'][0,0,0])
m.sample_action_type = args.arch.action_sample_type
m.sample_action_combine_type = args.arch.action_sample_combine_type
m.summary_ops = {
summary_mode: _add_summaries(m, args, summary_mode,
args.summary.arop_full_summary_iters)}
m.init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
m.saver_op = tf.train.Saver(keep_checkpoint_every_n_hours=4,
write_version=tf.train.SaverDef.V2)
return m