Spaces:
Running
Running
import pandas as pd | |
import numpy as np | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import sys | |
import random | |
sys.path.append('models') | |
from official.nlp.data import classifier_data_lib | |
from official.nlp.bert import tokenization | |
from official.nlp import optimization | |
tf.get_logger().setLevel('ERROR') | |
import math | |
from datetime import datetime | |
import gradio as gr | |
config = tf.compat.v1.ConfigProto( | |
device_count = {'cpu': 0} | |
) | |
sess = tf.compat.v1.Session(config=config) | |
num_warmup_steps=1 | |
num_train_steps=1 | |
init_lr = 3e-5 | |
optimizer = optimization.create_optimizer(init_lr=init_lr, | |
num_train_steps=num_train_steps, | |
num_warmup_steps=num_warmup_steps, | |
optimizer_type='adamw') | |
### Load Model | |
checkpoint_filepath=r'./Checkpoint' | |
model = tf.keras.models.load_model(checkpoint_filepath, custom_objects={'KerasLayer':hub.KerasLayer , 'AdamWeightDecay': optimizer}) | |
df_report = pd.read_csv('./CTH_Description.csv') | |
df_report['CTH Code'] = df_report['CTH Code'].astype(str).str.zfill(8) | |
df_report_DUTY = pd.read_csv('./CTH_WISE_DUTY_RATE.csv') | |
df_report_DUTY['CTH'] = df_report_DUTY['CTH'].astype(str).str.zfill(8) | |
df = pd.read_csv("./CTH_CODE_MAP.csv") | |
df['CTH'] = df['CTH'].astype(str).str.zfill(8) | |
df = df[['CTH', 'code']] | |
class_names=df[['CTH','code']].drop_duplicates(subset='CTH').sort_values(by='code',ignore_index=True)['CTH'].values.tolist() | |
label_list=list(range(0,len(class_names))) | |
max_seq_length = 200 # maximum length of (token) input sequences . it can be any number | |
train_batch_size = 32 # batch size ( 16 choosen to avoid Out-Of-Memory errors) | |
# Get BERT layer and tokenizer: | |
# More details here: https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4 | |
bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4" , trainable = True) | |
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() | |
do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() | |
tokenizer = tokenization.FullTokenizer(vocab_file , do_lower_case) | |
# This provides a function to convert each row to input features and label ( as required by BERT) | |
max_seq_length = 200 # maximum length of (token) input sequences . it can be any number | |
def to_feature(text, label, label_list=label_list, max_seq_length=max_seq_length, tokenizer=tokenizer): | |
example = classifier_data_lib.InputExample(guid = None, | |
text_a = text.numpy(), | |
text_b = None, | |
label = label.numpy()) | |
feature = classifier_data_lib.convert_single_example(0 , example , label_list , max_seq_length , tokenizer) | |
return (feature.input_ids , feature.input_mask , feature.segment_ids , feature.label_id) | |
def to_feature_map(text, label): | |
input_ids , input_mask , segment_ids , label_id = tf.py_function(to_feature , inp = [text , label], | |
Tout = [tf.int32 , tf.int32 , tf.int32 , tf.int32]) | |
input_ids.set_shape([max_seq_length]) | |
input_mask.set_shape([max_seq_length]) | |
segment_ids.set_shape([max_seq_length]) | |
label_id.set_shape([]) | |
x = { | |
"input_word_ids": input_ids, | |
"input_mask": input_mask, | |
"input_type_ids": segment_ids | |
} | |
return(x,label_id) | |
def print3largest(arr, arr_size): | |
third = first = second = -sys.maxsize | |
for i in range(0, arr_size): | |
if (arr[i] > first): | |
third = second | |
second = first | |
first = arr[i] | |
elif (arr[i] > second): | |
third = second | |
second = arr[i] | |
elif (arr[i] > third): | |
third = arr[i] | |
pred_value_max_three=[first, second, third] | |
return pred_value_max_three | |
def count_special_character(string): | |
special_char= 0 | |
for i in range(len(string)): | |
ch = string[i] | |
if (string[i].isalpha()): | |
continue | |
else: | |
special_char += 1 | |
if len(string)==special_char: | |
return False | |
else: | |
return True | |
def predict_CTH(txt): | |
print('Desc: ',txt) | |
if (txt!='') and len(txt)>=3 and (count_special_character(txt)): | |
valid_data = tf.data.Dataset.from_tensor_slices(([txt] , [1])) # 1 refers to 'entertainment' and 2 refers to 'sport' | |
valid_data = (valid_data.map(to_feature_map).batch(1)) | |
preds = model.predict(valid_data) | |
predicted_values = tf.nn.softmax(preds) | |
arr = predicted_values.numpy().tolist()[0] | |
n = len(arr) | |
pred_value_max_three=print3largest(arr, n) | |
now = datetime.now() | |
print("Time =", now) | |
sum_all = pred_value_max_three[0] + pred_value_max_three[1] + pred_value_max_three[2] | |
val_1 = pred_value_max_three[0]/sum_all | |
val_2 = pred_value_max_three[1]/sum_all | |
val_3 = pred_value_max_three[2]/sum_all | |
if pred_value_max_three[0]<=0.000131: | |
Var_CTH=[] | |
Var_desc=[] | |
Var_duty=[] | |
pred_duty='' | |
pred_desc='' | |
pred_CTH='' | |
return{'Not a adequate description':float(1.0)} | |
else: | |
Var_CTH=[] | |
Var_desc=[] | |
Var_duty=[] | |
pred_duty='' | |
pred_desc='' | |
pred_CTH='' | |
for i in pred_value_max_three: | |
#i=pred_value_max_three[0] | |
predicted_code=np.where(predicted_values.numpy()==i)[1][0] | |
pred_CTH=df[df['code'] == predicted_code]['CTH'].iloc[0] | |
try: | |
pred_duty=df_report_DUTY[df_report_DUTY['CTH']==str(pred_CTH)]['DUTY_RATE'].iloc[0] | |
except: | |
pred_duty='' | |
pass | |
try: | |
pred_desc=df_report[df_report['CTH Code']==str(pred_CTH)]['Concat Description'].iloc[0] | |
except: | |
pred_desc='' | |
pass | |
Var_CTH.append(pred_CTH) | |
Var_desc.append(pred_desc) | |
Var_duty.append(pred_duty) | |
P1 ='CTH: '+str(Var_CTH[0])+' Duty Rate(%): '+ str(Var_duty[0]) | |
P2 ='CTH: '+str(Var_CTH[1])+' Duty Rate(%): '+ str(Var_duty[1]) | |
P3 ='CTH: '+str(Var_CTH[2])+' Duty Rate(%): '+ str(Var_duty[2]) | |
Q1='Desc: '+str(Var_desc[0]) | |
Q2='Desc: '+str(Var_desc[1]) | |
Q3='Desc: '+str(Var_desc[2]) | |
return {str(P1):float(val_1),str(Q1):float(val_1), | |
str(P2):float(val_2),str(Q2):float(val_2), | |
str(P3):float(val_3),str(Q3):float(val_3),} | |
else: | |
return{'Enter Correct Description':float(1.0)} | |
input_txt=gr.Textbox( | |
label='Enter Your Product Descrption', | |
lines=3, | |
) | |
description="<p style='color:blue;text-align:justify;font-size:1vw;'>AdvaitBERT is modified version of BERT (Bidirectional Encoder Representation for Transformers), \ | |
finetuned on the Text corpus of Indian Customs Declarations. It is trained for performing \ | |
downstream tasks like automating the tariff classification and validation process of Customs \ | |
declarations in realtime. This model may help Customs administration to efficiently use AI assisted \ | |
NLP in realtime Customs process like Assessment, Post Clearance Audit, thereby highlighting classification \ | |
inconsistencies and help in revenue augmentation.</a></p>" | |
title="<h1 style='color:green;text-align:center;font-size:2vw;'>AdvaitBERT </a></h1>" | |
article="<p style='color:black;text-align:right;font-size:1vw;'>Powered by NCTC </a></p>" | |
#css=".gradio-container {background-color: papayawhip}", | |
blocked_files=[' /home/user/app/Checkpoint',' /home/user/app/fun_advaitbert.py',] | |
gr.Interface( | |
predict_CTH, | |
inputs=input_txt, | |
outputs="label", | |
interpretation="default", | |
description=description, | |
#live=True, | |
examples = ['200 SI/SI/SI LPO ALUMINIUM LIDS (QTY: 8820000 PCS/PRICE: 21.'], | |
title=title, | |
article=article, | |
blocked_paths=blocked_files, | |
).launch(auth=("NCTC", "NCTC"),blocked_paths=blocked_files,) |