NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
17.4 kB
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for EfficientNet model.
[1] Mingxing Tan, Quoc V. Le
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
ICML'19, https://arxiv.org/abs/1905.11946
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
from typing import Any, Dict, Optional, Text, Tuple
from absl import logging
from dataclasses import dataclass
import tensorflow as tf
from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.vision.image_classification import preprocessing
from official.vision.image_classification.efficientnet import common_modules
@dataclass
class BlockConfig(base_config.Config):
"""Config for a single MB Conv Block."""
input_filters: int = 0
output_filters: int = 0
kernel_size: int = 3
num_repeat: int = 1
expand_ratio: int = 1
strides: Tuple[int, int] = (1, 1)
se_ratio: Optional[float] = None
id_skip: bool = True
fused_conv: bool = False
conv_type: str = 'depthwise'
@dataclass
class ModelConfig(base_config.Config):
"""Default Config for Efficientnet-B0."""
width_coefficient: float = 1.0
depth_coefficient: float = 1.0
resolution: int = 224
dropout_rate: float = 0.2
blocks: Tuple[BlockConfig, ...] = (
# (input_filters, output_filters, kernel_size, num_repeat,
# expand_ratio, strides, se_ratio)
# pylint: disable=bad-whitespace
BlockConfig.from_args(32, 16, 3, 1, 1, (1, 1), 0.25),
BlockConfig.from_args(16, 24, 3, 2, 6, (2, 2), 0.25),
BlockConfig.from_args(24, 40, 5, 2, 6, (2, 2), 0.25),
BlockConfig.from_args(40, 80, 3, 3, 6, (2, 2), 0.25),
BlockConfig.from_args(80, 112, 5, 3, 6, (1, 1), 0.25),
BlockConfig.from_args(112, 192, 5, 4, 6, (2, 2), 0.25),
BlockConfig.from_args(192, 320, 3, 1, 6, (1, 1), 0.25),
# pylint: enable=bad-whitespace
)
stem_base_filters: int = 32
top_base_filters: int = 1280
activation: str = 'simple_swish'
batch_norm: str = 'default'
bn_momentum: float = 0.99
bn_epsilon: float = 1e-3
# While the original implementation used a weight decay of 1e-5,
# tf.nn.l2_loss divides it by 2, so we halve this to compensate in Keras
weight_decay: float = 5e-6
drop_connect_rate: float = 0.2
depth_divisor: int = 8
min_depth: Optional[int] = None
use_se: bool = True
input_channels: int = 3
num_classes: int = 1000
model_name: str = 'efficientnet'
rescale_input: bool = True
data_format: str = 'channels_last'
dtype: str = 'float32'
MODEL_CONFIGS = {
# (width, depth, resolution, dropout)
'efficientnet-b0': ModelConfig.from_args(1.0, 1.0, 224, 0.2),
'efficientnet-b1': ModelConfig.from_args(1.0, 1.1, 240, 0.2),
'efficientnet-b2': ModelConfig.from_args(1.1, 1.2, 260, 0.3),
'efficientnet-b3': ModelConfig.from_args(1.2, 1.4, 300, 0.3),
'efficientnet-b4': ModelConfig.from_args(1.4, 1.8, 380, 0.4),
'efficientnet-b5': ModelConfig.from_args(1.6, 2.2, 456, 0.4),
'efficientnet-b6': ModelConfig.from_args(1.8, 2.6, 528, 0.5),
'efficientnet-b7': ModelConfig.from_args(2.0, 3.1, 600, 0.5),
'efficientnet-b8': ModelConfig.from_args(2.2, 3.6, 672, 0.5),
'efficientnet-l2': ModelConfig.from_args(4.3, 5.3, 800, 0.5),
}
CONV_KERNEL_INITIALIZER = {
'class_name': 'VarianceScaling',
'config': {
'scale': 2.0,
'mode': 'fan_out',
# Note: this is a truncated normal distribution
'distribution': 'normal'
}
}
DENSE_KERNEL_INITIALIZER = {
'class_name': 'VarianceScaling',
'config': {
'scale': 1 / 3.0,
'mode': 'fan_out',
'distribution': 'uniform'
}
}
def round_filters(filters: int,
config: ModelConfig) -> int:
"""Round number of filters based on width coefficient."""
width_coefficient = config.width_coefficient
min_depth = config.min_depth
divisor = config.depth_divisor
orig_filters = filters
if not width_coefficient:
return filters
filters *= width_coefficient
min_depth = min_depth or divisor
new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_filters < 0.9 * filters:
new_filters += divisor
logging.info('round_filter input=%s output=%s', orig_filters, new_filters)
return int(new_filters)
def round_repeats(repeats: int, depth_coefficient: float) -> int:
"""Round number of repeats based on depth coefficient."""
return int(math.ceil(depth_coefficient * repeats))
def conv2d_block(inputs: tf.Tensor,
conv_filters: Optional[int],
config: ModelConfig,
kernel_size: Any = (1, 1),
strides: Any = (1, 1),
use_batch_norm: bool = True,
use_bias: bool = False,
activation: Any = None,
depthwise: bool = False,
name: Text = None):
"""A conv2d followed by batch norm and an activation."""
batch_norm = common_modules.get_batch_norm(config.batch_norm)
bn_momentum = config.bn_momentum
bn_epsilon = config.bn_epsilon
data_format = tf.keras.backend.image_data_format()
weight_decay = config.weight_decay
name = name or ''
# Collect args based on what kind of conv2d block is desired
init_kwargs = {
'kernel_size': kernel_size,
'strides': strides,
'use_bias': use_bias,
'padding': 'same',
'name': name + '_conv2d',
'kernel_regularizer': tf.keras.regularizers.l2(weight_decay),
'bias_regularizer': tf.keras.regularizers.l2(weight_decay),
}
if depthwise:
conv2d = tf.keras.layers.DepthwiseConv2D
init_kwargs.update({'depthwise_initializer': CONV_KERNEL_INITIALIZER})
else:
conv2d = tf.keras.layers.Conv2D
init_kwargs.update({'filters': conv_filters,
'kernel_initializer': CONV_KERNEL_INITIALIZER})
x = conv2d(**init_kwargs)(inputs)
if use_batch_norm:
bn_axis = 1 if data_format == 'channels_first' else -1
x = batch_norm(axis=bn_axis,
momentum=bn_momentum,
epsilon=bn_epsilon,
name=name + '_bn')(x)
if activation is not None:
x = tf.keras.layers.Activation(activation,
name=name + '_activation')(x)
return x
def mb_conv_block(inputs: tf.Tensor,
block: BlockConfig,
config: ModelConfig,
prefix: Text = None):
"""Mobile Inverted Residual Bottleneck.
Args:
inputs: the Keras input to the block
block: BlockConfig, arguments to create a Block
config: ModelConfig, a set of model parameters
prefix: prefix for naming all layers
Returns:
the output of the block
"""
use_se = config.use_se
activation = tf_utils.get_activation(config.activation)
drop_connect_rate = config.drop_connect_rate
data_format = tf.keras.backend.image_data_format()
use_depthwise = block.conv_type != 'no_depthwise'
prefix = prefix or ''
filters = block.input_filters * block.expand_ratio
x = inputs
if block.fused_conv:
# If we use fused mbconv, skip expansion and use regular conv.
x = conv2d_block(x,
filters,
config,
kernel_size=block.kernel_size,
strides=block.strides,
activation=activation,
name=prefix + 'fused')
else:
if block.expand_ratio != 1:
# Expansion phase
kernel_size = (1, 1) if use_depthwise else (3, 3)
x = conv2d_block(x,
filters,
config,
kernel_size=kernel_size,
activation=activation,
name=prefix + 'expand')
# Depthwise Convolution
if use_depthwise:
x = conv2d_block(x,
conv_filters=None,
config=config,
kernel_size=block.kernel_size,
strides=block.strides,
activation=activation,
depthwise=True,
name=prefix + 'depthwise')
# Squeeze and Excitation phase
if use_se:
assert block.se_ratio is not None
assert 0 < block.se_ratio <= 1
num_reduced_filters = max(1, int(
block.input_filters * block.se_ratio
))
if data_format == 'channels_first':
se_shape = (filters, 1, 1)
else:
se_shape = (1, 1, filters)
se = tf.keras.layers.GlobalAveragePooling2D(name=prefix + 'se_squeeze')(x)
se = tf.keras.layers.Reshape(se_shape, name=prefix + 'se_reshape')(se)
se = conv2d_block(se,
num_reduced_filters,
config,
use_bias=True,
use_batch_norm=False,
activation=activation,
name=prefix + 'se_reduce')
se = conv2d_block(se,
filters,
config,
use_bias=True,
use_batch_norm=False,
activation='sigmoid',
name=prefix + 'se_expand')
x = tf.keras.layers.multiply([x, se], name=prefix + 'se_excite')
# Output phase
x = conv2d_block(x,
block.output_filters,
config,
activation=None,
name=prefix + 'project')
# Add identity so that quantization-aware training can insert quantization
# ops correctly.
x = tf.keras.layers.Activation(tf_utils.get_activation('identity'),
name=prefix + 'id')(x)
if (block.id_skip
and all(s == 1 for s in block.strides)
and block.input_filters == block.output_filters):
if drop_connect_rate and drop_connect_rate > 0:
# Apply dropconnect
# The only difference between dropout and dropconnect in TF is scaling by
# drop_connect_rate during training. See:
# https://github.com/keras-team/keras/pull/9898#issuecomment-380577612
x = tf.keras.layers.Dropout(drop_connect_rate,
noise_shape=(None, 1, 1, 1),
name=prefix + 'drop')(x)
x = tf.keras.layers.add([x, inputs], name=prefix + 'add')
return x
def efficientnet(image_input: tf.keras.layers.Input,
config: ModelConfig):
"""Creates an EfficientNet graph given the model parameters.
This function is wrapped by the `EfficientNet` class to make a tf.keras.Model.
Args:
image_input: the input batch of images
config: the model config
Returns:
the output of efficientnet
"""
depth_coefficient = config.depth_coefficient
blocks = config.blocks
stem_base_filters = config.stem_base_filters
top_base_filters = config.top_base_filters
activation = tf_utils.get_activation(config.activation)
dropout_rate = config.dropout_rate
drop_connect_rate = config.drop_connect_rate
num_classes = config.num_classes
input_channels = config.input_channels
rescale_input = config.rescale_input
data_format = tf.keras.backend.image_data_format()
dtype = config.dtype
weight_decay = config.weight_decay
x = image_input
if data_format == 'channels_first':
# Happens on GPU/TPU if available.
x = tf.keras.layers.Permute((3, 1, 2))(x)
if rescale_input:
x = preprocessing.normalize_images(x,
num_channels=input_channels,
dtype=dtype,
data_format=data_format)
# Build stem
x = conv2d_block(x,
round_filters(stem_base_filters, config),
config,
kernel_size=[3, 3],
strides=[2, 2],
activation=activation,
name='stem')
# Build blocks
num_blocks_total = sum(
round_repeats(block.num_repeat, depth_coefficient) for block in blocks)
block_num = 0
for stack_idx, block in enumerate(blocks):
assert block.num_repeat > 0
# Update block input and output filters based on depth multiplier
block = block.replace(
input_filters=round_filters(block.input_filters, config),
output_filters=round_filters(block.output_filters, config),
num_repeat=round_repeats(block.num_repeat, depth_coefficient))
# The first block needs to take care of stride and filter size increase
drop_rate = drop_connect_rate * float(block_num) / num_blocks_total
config = config.replace(drop_connect_rate=drop_rate)
block_prefix = 'stack_{}/block_0/'.format(stack_idx)
x = mb_conv_block(x, block, config, block_prefix)
block_num += 1
if block.num_repeat > 1:
block = block.replace(
input_filters=block.output_filters,
strides=[1, 1]
)
for block_idx in range(block.num_repeat - 1):
drop_rate = drop_connect_rate * float(block_num) / num_blocks_total
config = config.replace(drop_connect_rate=drop_rate)
block_prefix = 'stack_{}/block_{}/'.format(stack_idx, block_idx + 1)
x = mb_conv_block(x, block, config, prefix=block_prefix)
block_num += 1
# Build top
x = conv2d_block(x,
round_filters(top_base_filters, config),
config,
activation=activation,
name='top')
# Build classifier
x = tf.keras.layers.GlobalAveragePooling2D(name='top_pool')(x)
if dropout_rate and dropout_rate > 0:
x = tf.keras.layers.Dropout(dropout_rate, name='top_dropout')(x)
x = tf.keras.layers.Dense(
num_classes,
kernel_initializer=DENSE_KERNEL_INITIALIZER,
kernel_regularizer=tf.keras.regularizers.l2(weight_decay),
bias_regularizer=tf.keras.regularizers.l2(weight_decay),
name='logits')(x)
x = tf.keras.layers.Activation('softmax', name='probs')(x)
return x
@tf.keras.utils.register_keras_serializable(package='Vision')
class EfficientNet(tf.keras.Model):
"""Wrapper class for an EfficientNet Keras model.
Contains helper methods to build, manage, and save metadata about the model.
"""
def __init__(self,
config: ModelConfig = None,
overrides: Dict[Text, Any] = None):
"""Create an EfficientNet model.
Args:
config: (optional) the main model parameters to create the model
overrides: (optional) a dict containing keys that can override
config
"""
overrides = overrides or {}
config = config or ModelConfig()
self.config = config.replace(**overrides)
input_channels = self.config.input_channels
model_name = self.config.model_name
input_shape = (None, None, input_channels) # Should handle any size image
image_input = tf.keras.layers.Input(shape=input_shape)
output = efficientnet(image_input, self.config)
# Cast to float32 in case we have a different model dtype
output = tf.cast(output, tf.float32)
logging.info('Building model %s with params %s',
model_name,
self.config)
super(EfficientNet, self).__init__(
inputs=image_input, outputs=output, name=model_name)
@classmethod
def from_name(cls,
model_name: Text,
model_weights_path: Text = None,
weights_format: Text = 'saved_model',
overrides: Dict[Text, Any] = None):
"""Construct an EfficientNet model from a predefined model name.
E.g., `EfficientNet.from_name('efficientnet-b0')`.
Args:
model_name: the predefined model name
model_weights_path: the path to the weights (h5 file or saved model dir)
weights_format: the model weights format. One of 'saved_model', 'h5',
or 'checkpoint'.
overrides: (optional) a dict containing keys that can override config
Returns:
A constructed EfficientNet instance.
"""
model_configs = dict(MODEL_CONFIGS)
overrides = dict(overrides) if overrides else {}
# One can define their own custom models if necessary
model_configs.update(overrides.pop('model_config', {}))
if model_name not in model_configs:
raise ValueError('Unknown model name {}'.format(model_name))
config = model_configs[model_name]
model = cls(config=config, overrides=overrides)
if model_weights_path:
common_modules.load_weights(model,
model_weights_path,
weights_format=weights_format)
return model