Spaces:
Running
on
A10G
Running
on
A10G
# Depth Estimation | |
## Getting Started | |
1. Install the [mmcv-full](https://github.com/open-mmlab/mmcv) library and some required packages. | |
```bash | |
pip install openmim | |
mim install mmcv-full | |
pip install -r requirements.txt | |
``` | |
2. Prepare NYUDepthV2 datasets following [GLPDepth](https://github.com/vinvino02/GLPDepth) and [BTS](https://github.com/cleinc/bts/tree/master). | |
``` | |
mkdir nyu_depth_v2 | |
wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat | |
python extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat ./nyu_depth_v2/official_splits/ | |
``` | |
Download sync.zip provided by the authors of BTS from this [url](https://drive.google.com/file/d/1AysroWpfISmm-yRFGBgFTrLy6FjQwvwP/view) and unzip in `./nyu_depth_v2` folder. | |
Your dataset directory should be: | |
``` | |
│nyu_depth_v2/ | |
├──official_splits/ | |
│ ├── test | |
│ ├── train | |
├──sync/ | |
``` | |
## Results and Fine-tuned Models | |
EVP obtains 0.224 RMSE on NYUv2 depth estimation benchmark, establishing the new state-of-the-art. | |
| | RMSE | d1 | d2 | d3 | REL | log_10 | | |
|---------|-------|-------|--------|------|-------|-------| | |
| **EVP** | 0.224 | 0.976 | 0.997 | 0.999 | 0.061 | 0.027 | | |
EVP obtains 0.048 REL and 0.136 SqREL on KITTI depth estimation benchmark, establishing the new state-of-the-art. | |
| | REL | SqREL | RMSE | RMSE log | d1 | d2 | d3 | | |
|---------|-------|-------|--------|------|-------|-------|-------| | |
| **EVP** | 0.048 | 0.136 | 2.015 | 0.073 | 0.980 | 0.998 | 1.000 | | |
## Training | |
Run the following instuction to train the EVP-Depth model. | |
``` | |
bash train.sh <LOG_DIR> | |
``` | |
## Evaluation | |
Command format: | |
``` | |
bash test.sh <CHECKPOINT_PATH> | |
``` | |
## Custom inference | |
``` | |
PYTHONPATH="../":$PYTHONPATH python inference.py --img_path test_img.jpg --ckpt_dir nyu.ckpt | |
``` | |