Spaces:
Running
on
A10G
Running
on
A10G
Depth Estimation
Getting Started
- Install the mmcv-full library and some required packages.
pip install openmim
mim install mmcv-full
pip install -r requirements.txt
mkdir nyu_depth_v2
wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
python extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat ./nyu_depth_v2/official_splits/
Download sync.zip provided by the authors of BTS from this url and unzip in ./nyu_depth_v2
folder.
Your dataset directory should be:
│nyu_depth_v2/
├──official_splits/
│ ├── test
│ ├── train
├──sync/
Results and Fine-tuned Models
EVP obtains 0.224 RMSE on NYUv2 depth estimation benchmark, establishing the new state-of-the-art.
RMSE | d1 | d2 | d3 | REL | log_10 | |
---|---|---|---|---|---|---|
EVP | 0.224 | 0.976 | 0.997 | 0.999 | 0.061 | 0.027 |
EVP obtains 0.048 REL and 0.136 SqREL on KITTI depth estimation benchmark, establishing the new state-of-the-art.
REL | SqREL | RMSE | RMSE log | d1 | d2 | d3 | |
---|---|---|---|---|---|---|---|
EVP | 0.048 | 0.136 | 2.015 | 0.073 | 0.980 | 0.998 | 1.000 |
Training
Run the following instuction to train the EVP-Depth model.
bash train.sh <LOG_DIR>
Evaluation
Command format:
bash test.sh <CHECKPOINT_PATH>
Custom inference
PYTHONPATH="../":$PYTHONPATH python inference.py --img_path test_img.jpg --ckpt_dir nyu.ckpt