MOFA-Video_Traj / pipeline /pipeline.py
myniu
init
826d651
raw
history blame
No virus
25.5 kB
import inspect
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from models.svdxt_featureflow_forward_controlnet_s2d_fixcmp_norefine import FlowControlNet
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKLTemporalDecoder
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from utils.scheduling_euler_discrete_karras_fix import EulerDiscreteScheduler
from models.unet_spatio_temporal_condition_controlnet import UNetSpatioTemporalConditionControlNetModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def _get_add_time_ids(
noise_aug_strength,
dtype,
batch_size,
fps=4,
motion_bucket_id=128,
unet=None,
):
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
passed_add_embed_dim = unet.config.addition_time_embed_dim * len(add_time_ids)
expected_add_embed_dim = unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
# add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
return add_time_ids
def _append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
def tensor2vid(video: torch.Tensor, processor, output_type="np"):
# Based on:
# https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
batch_size, channels, num_frames, height, width = video.shape
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
return outputs
@dataclass
class FlowControlNetPipelineOutput(BaseOutput):
r"""
Output class for zero-shot text-to-video pipeline.
Args:
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
frames: Union[List[PIL.Image.Image], np.ndarray]
controlnet_flow: torch.Tensor
class FlowControlNetPipeline(DiffusionPipeline):
model_cpu_offload_seq = "image_encoder->unet->vae"
_callback_tensor_inputs = ["latents"]
def __init__(
self,
vae: AutoencoderKLTemporalDecoder,
image_encoder: CLIPVisionModelWithProjection,
unet: UNetSpatioTemporalConditionControlNetModel,
controlnet: FlowControlNet,
scheduler: EulerDiscreteScheduler,
feature_extractor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
vae=vae,
image_encoder=image_encoder,
controlnet=controlnet,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.image_processor.pil_to_numpy(image)
image = self.image_processor.numpy_to_pt(image)
#image = image.unsqueeze(0)
image = _resize_with_antialiasing(image, (224, 224))
image = image.to(device=device, dtype=dtype)
image_embeddings = self.image_encoder(image).image_embeds
image_embeddings = image_embeddings.unsqueeze(1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
negative_image_embeddings = torch.zeros_like(image_embeddings)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
return image_embeddings
def _encode_vae_image(
self,
image: torch.Tensor,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
):
image = image.to(device=device)
image_latents = self.vae.encode(image).latent_dist.mode()
if do_classifier_free_guidance:
negative_image_latents = torch.zeros_like(image_latents)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_latents = torch.cat([negative_image_latents, image_latents])
# duplicate image_latents for each generation per prompt, using mps friendly method
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
return image_latents
def _get_add_time_ids(
self,
fps,
motion_bucket_id,
noise_aug_strength,
dtype,
batch_size,
num_videos_per_prompt,
do_classifier_free_guidance,
):
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
if do_classifier_free_guidance:
add_time_ids = torch.cat([add_time_ids, add_time_ids])
return add_time_ids
def decode_latents(self, latents, num_frames, decode_chunk_size=14):
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
latents = latents.flatten(0, 1)
latents = 1 / self.vae.config.scaling_factor * latents
accepts_num_frames = "num_frames" in set(inspect.signature(self.vae.forward).parameters.keys())
# decode decode_chunk_size frames at a time to avoid OOM
frames = []
for i in range(0, latents.shape[0], decode_chunk_size):
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
decode_kwargs = {}
if accepts_num_frames:
# we only pass num_frames_in if it's expected
decode_kwargs["num_frames"] = num_frames_in
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
frames.append(frame)
frames = torch.cat(frames, dim=0)
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
frames = frames.float()
return frames
def check_inputs(self, image, height, width):
if (
not isinstance(image, torch.Tensor)
and not isinstance(image, PIL.Image.Image)
and not isinstance(image, list)
):
raise ValueError(
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(image)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
def prepare_latents(
self,
batch_size,
num_frames,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_frames,
num_channels_latents // 2,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
def __call__(
self,
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor], # PIL
controlnet_condition: [torch.FloatTensor] = None, # PIL
controlnet_flow: [torch.FloatTensor] = None, # [1, 13, 2, h, w]
# controlnet_mask: [torch.FloatTensor] = None, # [1, 13, 2, h, w]
# val_pixel_values_384: [torch.FloatTensor] = None,
# val_sparse_optical_flow_384: [torch.FloatTensor] = None,
# val_mask_384: [torch.FloatTensor] = None,
height: int = 576,
width: int = 1024,
num_frames: Optional[int] = None,
num_inference_steps: int = 25,
min_guidance_scale: float = 1.0,
max_guidance_scale: float = 3.0,
fps: int = 7,
motion_bucket_id: int = 127,
noise_aug_strength: int = 0.02,
decode_chunk_size: Optional[int] = None,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
return_dict: bool = True,
controlnet_cond_scale=1.0,
batch_size=1,
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
# 1. Check inputs. Raise error if not correct
self.check_inputs(image, height, width)
# 2. Define call parameters
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = max_guidance_scale > 1.0
# 3. Encode input image
image_embeddings = self._encode_image(image, device, num_videos_per_prompt, do_classifier_free_guidance)
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
# is why it is reduced here.
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
fps = fps - 1
# 4. Encode input image using VAE
image = self.image_processor.preprocess(image, height=height, width=width)
noise = randn_tensor(image.shape, generator=generator, device=image.device, dtype=image.dtype)
image = image + noise_aug_strength * noise
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.vae.to(dtype=torch.float32)
image_latents = self._encode_vae_image(image, device, num_videos_per_prompt, do_classifier_free_guidance)
image_latents = image_latents.to(image_embeddings.dtype)
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
# Repeat the image latents for each frame so we can concatenate them with the noise
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
#image_latents = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
# 5. Get Added Time IDs
added_time_ids = self._get_add_time_ids(
fps,
motion_bucket_id,
noise_aug_strength,
image_embeddings.dtype,
batch_size,
num_videos_per_prompt,
do_classifier_free_guidance,
)
added_time_ids = added_time_ids.to(device)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_frames,
num_channels_latents,
height,
width,
image_embeddings.dtype,
device,
generator,
latents,
)
#prepare controlnet condition
controlnet_condition = self.image_processor.preprocess(controlnet_condition, height=height, width=width)
# controlnet_condition = controlnet_condition.unsqueeze(0)
controlnet_condition = torch.cat([controlnet_condition] * 2) if do_classifier_free_guidance else latents
controlnet_condition = controlnet_condition.to(device, latents.dtype)
controlnet_flow = torch.cat([controlnet_flow] * 2) if do_classifier_free_guidance else latents
controlnet_flow = controlnet_flow.to(device, latents.dtype)
# print(height, width)
# print(controlnet_condition.shape)
# print(controlnet_flow.shape)
# print(image.shape)
# assert False
# controlnet_mask = torch.cat([controlnet_mask] * 2) if do_classifier_free_guidance else latents
# controlnet_mask = controlnet_mask.to(device, latents.dtype)
# controlnet_init_flow = torch.cat([controlnet_init_flow] * 2) if do_classifier_free_guidance else latents
# controlnet_init_flow = controlnet_init_flow.to(device, latents.dtype)
# val_pixel_values_384 = torch.cat([val_pixel_values_384] * 2) if do_classifier_free_guidance else latents
# val_pixel_values_384 = val_pixel_values_384.to(device, latents.dtype)
# val_sparse_optical_flow_384 = torch.cat([val_sparse_optical_flow_384] * 2) if do_classifier_free_guidance else latents
# val_sparse_optical_flow_384 = val_sparse_optical_flow_384.to(device, latents.dtype)
# val_mask_384 = torch.cat([val_mask_384] * 2) if do_classifier_free_guidance else latents
# val_mask_384 = val_mask_384.to(device, latents.dtype)
# 7. Prepare guidance scale
guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0)
guidance_scale = guidance_scale.to(device, latents.dtype)
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
guidance_scale = _append_dims(guidance_scale, latents.ndim)
self._guidance_scale = guidance_scale
noise_aug_strength = 0.02 #"¯\_(ツ)_/¯
added_time_ids = _get_add_time_ids(
noise_aug_strength,
image_embeddings.dtype,
batch_size,
6,
128,
unet=self.unet,
)
added_time_ids = torch.cat([added_time_ids] * 2)
added_time_ids = added_time_ids.to(latents.device)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# Concatenate image_latents over channels dimention
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
# print(latent_model_input.shape)
# print(controlnet_flow.shape)
# assert False
# controlnet_flow = None
down_block_res_samples, mid_block_res_sample, controlnet_flow, _ = self.controlnet(
latent_model_input,
t,
encoder_hidden_states=image_embeddings,
controlnet_cond=controlnet_condition,
controlnet_flow=controlnet_flow,
# controlnet_mask=controlnet_mask,
# pixel_values_384=val_pixel_values_384,
# sparse_optical_flow_384=val_sparse_optical_flow_384,
# mask_384=val_mask_384,
added_time_ids=added_time_ids,
conditioning_scale=controlnet_cond_scale,
guess_mode=False,
return_dict=False,
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=image_embeddings,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_time_ids=added_time_ids,
return_dict=False,
)[0]
# assert False
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if not output_type == "latent":
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
frames = self.decode_latents(latents.to(self.vae.dtype), num_frames, decode_chunk_size)
frames = tensor2vid(frames, self.image_processor, output_type=output_type)
else:
frames = latents
self.maybe_free_model_hooks()
if not return_dict:
return frames, controlnet_flow
return FlowControlNetPipelineOutput(frames=frames, controlnet_flow=controlnet_flow)
# resizing utils
# TODO: clean up later
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
if input.ndim == 3:
input = input.unsqueeze(0) # Add a batch dimension
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = _gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _compute_padding(kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def _filter2d(input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = _compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _gaussian_blur2d(input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = _filter2d(input, kernel_x[..., None, :])
out = _filter2d(out_x, kernel_y[..., None])
return out