MvitHYF commited on
Commit
4e1b5fb
1 Parent(s): 723b311

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +45 -0
  2. best.pt +3 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ONLY yolov5 single input and output
2
+ import gradio as gr
3
+ from ultralyticsplus import YOLO
4
+ #import yolov5
5
+ from PIL import Image
6
+
7
+ # Load your model
8
+ # model = yolov5.load('MvitHYF/cocoaseedyolov5mvit')
9
+ model_path = "best.pt"
10
+ model = YOLO(model_path)
11
+ model.conf = 0.40
12
+ model.iou = 0.45
13
+ model.agnostic = True
14
+ model.multi_label = False
15
+ model.max_det = 100
16
+ # model.overrides['conf'] = 0.25 # NMS confidence threshold
17
+ # model.overrides['iou'] = 0.45 # NMS IoU threshold
18
+ # model.overrides['agnostic_nms'] = False # NMS class-agnostic
19
+ # model.overrides['max_det'] = 1000 # maximum number of detections per image
20
+
21
+ #css = ".output_image {height: 40rem !important; width: 100% !important;}"
22
+
23
+ def predict(input_image):
24
+ try:
25
+ # Perform inference
26
+ results = model(input_image, size=(1920), augment=True)
27
+
28
+ # Convert result image with bounding boxes to PIL format for Gradio output
29
+ result_image = Image.fromarray(results.render()[0])
30
+
31
+ return result_image
32
+
33
+ except Exception as e:
34
+ return f"Error: {str(e)}"
35
+
36
+ # Set up Gradio interface
37
+ interface = gr.Interface(
38
+ fn=predict,
39
+ inputs=gr.Image(type="pil", label="Upload an Image1"),
40
+ outputs=gr.Image(type="pil", label="Result1"),
41
+ #css = css,
42
+ title="Object Detection using YOLOv5",
43
+ description="Upload an image to detect objects using the YOLOv5 model"
44
+ )
45
+ interface.launch()
best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ebd2c1660df6974903a85db59e44f78b10685299b030f2d991d803782d992e
3
+ size 14645181