MvitHYF commited on
Commit
723b311
1 Parent(s): e4a9d9d

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -45
app.py DELETED
@@ -1,45 +0,0 @@
1
- #ONLY yolov5 single input and output
2
- import gradio as gr
3
- from ultralyticsplus import YOLO
4
- #import yolov5
5
- from PIL import Image
6
-
7
- # Load your model
8
- # model = yolov5.load('MvitHYF/cocoaseedyolov5mvit')
9
- model_path = "/Users/heartties/Desktop/yolo-safety-env/code/v5cocoaseedmvit2024space/best.pt"
10
- model = YOLO(model_path)
11
- model.conf = 0.40
12
- model.iou = 0.45
13
- model.agnostic = True
14
- model.multi_label = False
15
- model.max_det = 100
16
- # model.overrides['conf'] = 0.25 # NMS confidence threshold
17
- # model.overrides['iou'] = 0.45 # NMS IoU threshold
18
- # model.overrides['agnostic_nms'] = False # NMS class-agnostic
19
- # model.overrides['max_det'] = 1000 # maximum number of detections per image
20
-
21
- #css = ".output_image {height: 40rem !important; width: 100% !important;}"
22
-
23
- def predict(input_image):
24
- try:
25
- # Perform inference
26
- results = model(input_image, size=(1920), augment=True)
27
-
28
- # Convert result image with bounding boxes to PIL format for Gradio output
29
- result_image = Image.fromarray(results.render()[0])
30
-
31
- return result_image
32
-
33
- except Exception as e:
34
- return f"Error: {str(e)}"
35
-
36
- # Set up Gradio interface
37
- interface = gr.Interface(
38
- fn=predict,
39
- inputs=gr.Image(type="pil", label="Upload an Image1"),
40
- outputs=gr.Image(type="pil", label="Result1"),
41
- #css = css,
42
- title="Object Detection using YOLOv5",
43
- description="Upload an image to detect objects using the YOLOv5 model"
44
- )
45
- interface.launch()