James McCool
Enhance baseline data handling in app.py by introducing conditional logic for DraftKings and FanDuel. This update assigns the appropriate raw data and column names based on the selected site, improving the accuracy and flexibility of contest simulations.
3fbcd23
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import gspread
import pymongo
import time
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
return client
client = init_conn()
percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
@st.cache_data(ttl = 599)
def init_DK_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"DK_{sport}_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 599)
def init_DK_secondary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"DK_{sport}_Secondary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_second_seed = raw_display.to_numpy()
return DK_second_seed
@st.cache_data(ttl = 599)
def init_DK_auxiliary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"DK_{sport}_Auxiliary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_auxiliary_seed = raw_display.to_numpy()
return DK_auxiliary_seed
@st.cache_data(ttl = 599)
def init_FD_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"FD_{sport}_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 599)
def init_FD_secondary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"FD_{sport}_Secondary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_second_seed = raw_display.to_numpy()
return FD_second_seed
@st.cache_data(ttl = 599)
def init_FD_auxiliary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"FD_{sport}_Auxiliary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_auxiliary_seed = raw_display.to_numpy()
return FD_auxiliary_seed
@st.cache_data(ttl = 599)
def init_baselines(sport):
if sport == 'NFL':
db = client["NFL_Database"]
collection = db['DK_SD_NFL_ROO']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum()
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
raw_display['cpt_Median'] = raw_display['Median'] * 1.25
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
dk_raw = raw_display.dropna(subset=['Median'])
collection = db['FD_SD_NFL_ROO']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
raw_display['small_CPT_Own'] = raw_display['CPT_Own']
raw_display['cpt_Median'] = raw_display['Median']
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
fd_raw = raw_display.dropna(subset=['Median'])
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db['Player_SD_Range_Of_Outcomes']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
raw_display = raw_display[raw_display['site'] == 'Draftkings']
raw_display['Small_Field_Own'] = raw_display['Small_Own']
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum()
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
raw_display['cpt_Median'] = raw_display['Median'] * 1.25
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
dk_raw = raw_display.dropna(subset=['Median'])
collection = db['Player_SD_Range_Of_Outcomes']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
raw_display = raw_display[raw_display['site'] == 'Fanduel']
raw_display['Small_Field_Own'] = raw_display['Large_Own']
raw_display['small_CPT_Own'] = raw_display['CPT_Own']
raw_display['cpt_Median'] = raw_display['Median']
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
fd_raw = raw_display.dropna(subset=['Median'])
return dk_raw, fd_raw
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_DK_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :6], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def calculate_FD_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :5], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
SimVar = 1
Sim_Winners = []
# Pre-vectorize functions
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
vec_cpt_projection_map = np.vectorize(maps_dict['cpt_projection_map'].__getitem__)
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
vec_cpt_stdev_map = np.vectorize(maps_dict['cpt_STDev_map'].__getitem__)
st.write('Simulating contest on frames')
while SimVar <= Sim_size:
fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)]
sample_arrays1 = np.c_[
fp_random,
np.sum(np.random.normal(
loc=np.concatenate([
vec_cpt_projection_map(fp_random[:, 0:1]), # Apply cpt_projection_map to first column
vec_projection_map(fp_random[:, 1:-7]) # Apply original projection to remaining columns
], axis=1),
scale=np.concatenate([
vec_cpt_stdev_map(fp_random[:, 0:1]), # Apply cpt_projection_map to first column
vec_stdev_map(fp_random[:, 1:-7]) # Apply original projection to remaining columns
], axis=1)),
axis=1)
]
sample_arrays = sample_arrays1
final_array = sample_arrays[sample_arrays[:, 7].argsort()[::-1]]
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
Sim_Winners.append(best_lineup)
SimVar += 1
return Sim_Winners
dk_raw, fd_raw = init_baselines('NFL')
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab2:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
dk_raw, fd_raw = init_baselines('NFL')
sport_var1 = st.radio("What sport are you working with?", ('NFL', 'NBA'), key='sport_var1')
slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='slate_var1')
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
if site_var1 == 'Draftkings':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = dk_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
elif site_var1 == 'Fanduel':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = fd_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [4, 3, 2, 1, 0]
if st.button("Prepare data export", key='data_export'):
if 'working_seed' in st.session_state:
data_export = st.session_state.working_seed.copy()
elif 'working_seed' not in st.session_state:
if site_var1 == 'Draftkings':
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_DK_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_DK_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_FD_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_FD_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
raw_baselines = fd_raw
column_names = fd_columns
data_export = st.session_state.working_seed.copy()
for col in range(6):
data_export[:, col] = np.array([export_id_dict.get(x, x) for x in data_export[:, col]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NFL_SD_optimals_export.csv',
mime='text/csv',
)
with col2:
if st.button("Load Data", key='load_data'):
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_DK_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_DK_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_FD_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_FD_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
with tab1:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
dk_raw, fd_raw = init_baselines('NFL')
sim_sport_var1 = st.radio("What sport are you working with?", ('NFL', 'NBA'), key='sim_sport_var1')
dk_raw, fd_raw = init_baselines(sim_sport_var1)
sim_slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='sim_slate_var1')
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
if sim_site_var1 == 'Draftkings':
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
raw_baselines = fd_raw
column_names = fd_columns
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
if contest_var1 == 'Small':
Contest_Size = 1000
st.write("Small field size is 1,000 entrants.")
raw_baselines['Own'] = raw_baselines['Small_Field_Own']
raw_baselines['CPT_Own'] = raw_baselines['small_CPT_Own']
elif contest_var1 == 'Medium':
Contest_Size = 5000
st.write("Medium field size is 5,000 entrants.")
elif contest_var1 == 'Large':
Contest_Size = 10000
st.write("Large field size is 10,000 entrants.")
elif contest_var1 == 'Custom':
Contest_Size = st.number_input("Insert contest size", value=100, min_value=1, max_value=100000)
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
if strength_var1 == 'Not Very':
sharp_split = 500000
elif strength_var1 == 'Below Average':
sharp_split = 400000
elif strength_var1 == 'Average':
sharp_split = 300000
elif strength_var1 == 'Above Average':
sharp_split = 200000
elif strength_var1 == 'Very':
sharp_split = 100000
with col2:
if st.button("Run Contest Sim"):
if 'working_seed' in st.session_state:
maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
else:
if sim_site_var1 == 'Draftkings':
if sim_slate_var1 == 'Showdown':
st.session_state.working_seed = init_DK_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sim_slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_DK_secondary_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sim_slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
if sim_slate_var1 == 'Showdown':
st.session_state.working_seed = init_FD_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sim_slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_FD_secondary_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sim_slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
raw_baselines = fd_raw
column_names = fd_columns
maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
# Add percent rank columns for ownership at each roster position
# Calculate Dupes column for Fanduel
if sim_site_var1 == 'Fanduel':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
# Calculate ownership product and convert to probability
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1)) + 0.0001
# Calculate average of ownership percent rank columns
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
# Calculate dupes formula
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
# Round and handle negative values
Sim_Winner_Frame['Dupes'] = np.where(
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
0,
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
)
Sim_Winner_Frame['Dupes'] = (Sim_Winner_Frame['Dupes'] * (500000 / sharp_split)) / 2
elif sim_site_var1 == 'Draftkings':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX5_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX5_Own'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']) / 100
# Calculate ownership product and convert to probability
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1))
# Calculate average of ownership percent rank columns
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
# Calculate dupes formula
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
# Round and handle negative values
Sim_Winner_Frame['Dupes'] = np.where(
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
0,
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
)
Sim_Winner_Frame['Dupes'] = (Sim_Winner_Frame['Dupes'] * (500000 / sharp_split)) / 2
Sim_Winner_Frame['Dupes'] = np.round(Sim_Winner_Frame['Dupes'], 0)
Sim_Winner_Frame['Dupes'] = np.where(
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
0,
np.round(Sim_Winner_Frame['dupes_calc'], 0)
)
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=dup_count_columns)
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=own_columns)
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=calc_columns)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32, 'Dupes': int}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
st.session_state.Sim_Winner_Export.iloc[:, 0:6] = st.session_state.Sim_Winner_Export.iloc[:, 0:6].apply(lambda x: x.map(export_id_dict))
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
freq_copy = st.session_state.Sim_Winner_Display
if sim_site_var1 == 'Draftkings':
freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:5].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
freq_working['Freq'] = freq_working['Freq'].astype(int)
freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
if sim_site_var1 == 'Draftkings':
if sim_sport_var1 == 'NFL':
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map']) / 1.5
elif sim_sport_var1 == 'NBA':
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
elif sim_site_var1 == 'Fanduel':
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
freq_working['Exposure'] = freq_working['Freq']/(1000)
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
freq_working['Team'] = freq_working['Player'].map(maps_dict['Team_map'])
st.session_state.player_freq = freq_working.copy()
if sim_site_var1 == 'Draftkings':
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
cpt_working['Freq'] = cpt_working['Freq'].astype(int)
cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
if sim_sport_var1 == 'NFL':
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
elif sim_sport_var1 == 'NBA':
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map']) * 1.5
cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['cpt_Own_map']) / 100
cpt_working['Exposure'] = cpt_working['Freq']/(1000)
cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
st.session_state.sp_freq = cpt_working.copy()
if sim_site_var1 == 'Draftkings':
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
cpt_own_div = 600
elif sim_site_var1 == 'Fanduel':
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:5].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
cpt_own_div = 500
flex_working['Freq'] = flex_working['Freq'].astype(int)
flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
if sim_site_var1 == 'Draftkings':
if sim_sport_var1 == 'NFL':
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map']) / 1.5
elif sim_sport_var1 == 'NBA':
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
elif sim_site_var1 == 'Fanduel':
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
flex_working['Proj Own'] = (flex_working['Player'].map(maps_dict['Own_map']) / 100) - (flex_working['Player'].map(maps_dict['cpt_Own_map']) / 100)
flex_working['Exposure'] = flex_working['Freq']/(1000)
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
st.session_state.flex_freq = flex_working.copy()
if sim_site_var1 == 'Draftkings':
team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
team_working['Freq'] = team_working['Freq'].astype(int)
team_working['Exposure'] = team_working['Freq']/(1000)
st.session_state.team_freq = team_working.copy()
with st.container():
if st.button("Reset Sim", key='reset_sim'):
for key in st.session_state.keys():
del st.session_state[key]
if 'player_freq' in st.session_state:
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
if player_split_var2 == 'Specific Players':
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
elif player_split_var2 == 'Full Players':
find_var2 = st.session_state.player_freq.Player.values.tolist()
if player_split_var2 == 'Specific Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
if player_split_var2 == 'Full Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
if 'Sim_Winner_Display' in st.session_state:
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if 'Sim_Winner_Export' in st.session_state:
st.download_button(
label="Export Full Frame",
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
file_name='NFL_SD_consim_export.csv',
mime='text/csv',
)
with st.container():
tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'CPT Exposures', 'FLEX Exposures', 'Team Exposures'])
with tab1:
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.player_freq.to_csv().encode('utf-8'),
file_name='player_freq_export.csv',
mime='text/csv',
key='overall'
)
with tab2:
if 'sp_freq' in st.session_state:
st.dataframe(st.session_state.sp_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.sp_freq.to_csv().encode('utf-8'),
file_name='cpt_freq.csv',
mime='text/csv',
key='sp'
)
with tab3:
if 'flex_freq' in st.session_state:
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
file_name='flex_freq.csv',
mime='text/csv',
key='flex'
)
with tab4:
if 'team_freq' in st.session_state:
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.team_freq.to_csv().encode('utf-8'),
file_name='team_freq.csv',
mime='text/csv',
key='team'
)