Spaces:
Running
Running
import pulp | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import gspread | |
scope = ['https://www.googleapis.com/auth/spreadsheets', | |
"https://www.googleapis.com/auth/drive"] | |
credentials = { | |
"type": "service_account", | |
"project_id": "sheets-api-connect-378620", | |
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9", | |
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n", | |
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com", | |
"client_id": "106625872877651920064", | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com" | |
} | |
gc = gspread.service_account_from_dict(credentials) | |
st.set_page_config(layout="wide") | |
roo_format = {'Win%': '{:.2%}', 'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', | |
'60+%': '{:.2%}','5x%': '{:.2%}','6x%': '{:.2%}','7x%': '{:.2%}','Own': '{:.2%}', 'Cpt_Own': '{:.2%}','LevX': '{:.2%}'} | |
stat_format = {'Odds%': '{:.2%}'} | |
table_format = {'Odds': '{:.2%}'} | |
csgo_overall = 'CSGO_Overall_Proj' | |
csgo_rpl = 'CSGO_RPL_Proj' | |
csgo_neutral = 'CSGO_Neutral_Proj' | |
csgo_wins = 'CSGO_Win_Proj' | |
csgo_losses = 'CSGO_Loss_Proj' | |
overall_odds = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013' | |
RPL_odds = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013' | |
csgo_bo1 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013' | |
two_map = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013' | |
csgo_bo3 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013' | |
csgo_bo5 = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013' | |
player_baselines = 'https://docs.google.com/spreadsheets/d/1aLVN4izjSuqZGRyz73Kip6U1q3rubh6v9GrckgEqbfs/edit?pli=1#gid=1545712013' | |
def load_roo_model(URL): | |
sh = gc.open(URL) | |
worksheet = sh.get_worksheet(0) | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
try: | |
raw_display["Salary"] = raw_display["Salary"].replace("$", "", regex=True).astype(float) | |
except: | |
pass | |
try: | |
raw_display['Win%'] = raw_display['Win%'].str.replace('%', '').astype(float)/100 | |
except: | |
pass | |
try: | |
raw_display['Top_finish'] = raw_display['Top_finish'].str.replace('%', '').astype(float)/100 | |
except: | |
pass | |
try: | |
raw_display['Top_5_finish'] = raw_display['Top_5_finish'].str.replace('%', '').astype(float)/100 | |
except: | |
pass | |
try: | |
raw_display['Top_10_finish'] = raw_display['Top_10_finish'].str.replace('%', '').astype(float)/100 | |
except: | |
pass | |
try: | |
raw_display['60+%'] = raw_display['60+%'].str.replace('%', '').astype(float)/100 | |
except: | |
pass | |
try: | |
raw_display['5x%'] = raw_display['5x%'].str.replace('%', '').astype(float)/100 | |
except: | |
pass | |
try: | |
raw_display['6x%'] = raw_display['6x%'].str.replace('%', '').astype(float)/100 | |
except: | |
pass | |
try: | |
raw_display['7x%'] = raw_display['7x%'].str.replace('%', '').astype(float)/100 | |
except: | |
pass | |
try: | |
raw_display['Own'] = raw_display['Own'].str.replace('%', '').astype(float)/100 | |
except: | |
pass | |
try: | |
raw_display['LevX'] = raw_display['LevX'].str.replace('%', '').astype(float)/100 | |
except: | |
pass | |
return raw_display | |
def load_overall_odds(URL): | |
sh = gc.open_by_url(URL) | |
worksheet = sh.worksheet('Overall_Vegas') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display['Odds'] = raw_display['Odds'].str.replace('%', '').astype(float)/100 | |
return raw_display | |
def load_rpl_odds(URL): | |
sh = gc.open_by_url(URL) | |
worksheet = sh.worksheet('RPL_Vegas') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display['Odds'] = raw_display['Odds'].str.replace('%', '').astype(float)/100 | |
raw_display['Vegas'] = raw_display['Vegas'].str.replace('%', '').astype(float)/100 | |
raw_display = raw_display[['Team', 'Opponent', 'RPL', 'Opp_RPL', 'RPL_Diff', 'Vegas', 'Odds', 'P Rounds']] | |
return raw_display | |
def load_bo1_proj_model(URL): | |
sh = gc.open_by_url(URL) | |
worksheet = sh.worksheet('Overall_BO1_Projections') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display.rename(columns={"Name": "Player"}, inplace = True) | |
raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100 | |
raw_display = raw_display.sort_values(by='Kills', ascending=False) | |
return raw_display | |
def two_map_load(URL): | |
sh = gc.open_by_url(URL) | |
worksheet = sh.worksheet('2_map_projections') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display.rename(columns={"Name": "Player"}, inplace = True) | |
raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100 | |
raw_display = raw_display.sort_values(by='Kills', ascending=False) | |
return raw_display | |
def load_bo3_proj_model(URL): | |
sh = gc.open_by_url(URL) | |
worksheet = sh.worksheet('Overall_BO3_Projections') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display.rename(columns={"Name": "Player"}, inplace = True) | |
raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100 | |
raw_display = raw_display.sort_values(by='Kills', ascending=False) | |
return raw_display | |
def load_bo5_proj_model(URL): | |
sh = gc.open_by_url(URL) | |
worksheet = sh.worksheet('Overall_BO5_Projections') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display.rename(columns={"Name": "Player"}, inplace = True) | |
raw_display['Odds%'] = raw_display['Odds%'].str.replace('%', '').astype(float)/100 | |
raw_display = raw_display.sort_values(by='Kills', ascending=False) | |
return raw_display | |
def load_slate_baselines(URL): | |
sh = gc.open_by_url(URL) | |
worksheet = sh.worksheet('Player_Data') | |
raw_display = pd.DataFrame(worksheet.get_all_records()) | |
raw_display.rename(columns={"Name": "Player"}, inplace = True) | |
raw_display = raw_display.sort_values(by='Kills/Round', ascending=False) | |
return raw_display | |
hold_display = load_roo_model(csgo_overall) | |
tab1, tab2, tab3, tab4, tab5 = st.tabs(["CSGO Odds Tables", "CSGO Range of Outcomes", "CSGO Player Stat Projections", "CSGO Slate Baselines", '2-map Projections']) | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
with tab1: | |
if st.button("Reset Data", key='reset4'): | |
# Clear values from *all* all in-memory and on-disk data caches: | |
# i.e. clear values from both square and cube | |
st.cache_data.clear() | |
odds_choice = st.radio("What table would you like to display?", ('Overall', 'RPL'), key='odds_table') | |
if odds_choice == 'Overall': | |
hold_display = load_overall_odds(overall_odds) | |
elif odds_choice == 'RPL': | |
hold_display = load_rpl_odds(RPL_odds) | |
display = hold_display.set_index('Team') | |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(table_format, precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Tables", | |
data=convert_df_to_csv(display), | |
file_name='CSGO_Odds_Tables_export.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
if st.button("Reset Data", key='reset1'): | |
# Clear values from *all* all in-memory and on-disk data caches: | |
# i.e. clear values from both square and cube | |
st.cache_data.clear() | |
model_choice = st.radio("What table would you like to display?", ('Overall', 'RPL', 'Neutral', 'Wins', 'Losses'), key='roo_table') | |
team_var1 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'roo_teamvar') | |
if model_choice == 'Overall': | |
hold_display = load_roo_model(csgo_overall) | |
elif model_choice == 'RPL': | |
hold_display = load_roo_model(csgo_rpl) | |
elif model_choice == 'Neutral': | |
hold_display = load_roo_model(csgo_neutral) | |
elif model_choice == 'Wins': | |
hold_display = load_roo_model(csgo_wins) | |
elif model_choice == 'Losses': | |
hold_display = load_roo_model(csgo_losses) | |
hold_display['Cpt_Own'] = (hold_display['Own']) * ((100 - (100-hold_display['Own']))) | |
hold_display['Own'] = hold_display['Own'] / 100 | |
display = hold_display.set_index('Player') | |
export_display = display | |
export_display['Own'] = export_display['Own'] *100 | |
export_display['Position'] = "FLEX" | |
if team_var1: | |
display = display[display['Team'].isin(team_var1)] | |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Range of Outcomes", | |
data=convert_df_to_csv(export_display), | |
file_name='CSGO_ROO_export.csv', | |
mime='text/csv', | |
) | |
with tab3: | |
if st.button("Reset Data", key='reset2'): | |
# Clear values from *all* all in-memory and on-disk data caches: | |
# i.e. clear values from both square and cube | |
st.cache_data.clear() | |
gametype_choice = st.radio("What format are the games being played?", ('Best of 1', 'Best of 3', 'Best of 5'), key='player_stats') | |
team_var2 = st.multiselect('View specific team?', options = hold_display['Team'].unique(), key = 'stat_teamvar') | |
if gametype_choice == 'Best of 1': | |
hold_display = load_bo1_proj_model(csgo_bo1) | |
elif gametype_choice == 'Best of 3': | |
hold_display = load_bo3_proj_model(csgo_bo3) | |
elif gametype_choice == 'Best of 5': | |
hold_display = load_bo5_proj_model(csgo_bo5) | |
display = hold_display.set_index('Player') | |
if team_var2: | |
display = display[display['Team'].isin(team_var2)] | |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(stat_format, precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Projections", | |
data=convert_df_to_csv(display), | |
file_name='CSGO_Projections_export.csv', | |
mime='text/csv', | |
) | |
with tab4: | |
if st.button("Reset Data", key='reset3'): | |
# Clear values from *all* all in-memory and on-disk data caches: | |
# i.e. clear values from both square and cube | |
st.cache_data.clear() | |
hold_display = load_slate_baselines(player_baselines) | |
display = hold_display.set_index('Player') | |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Baselines", | |
data=convert_df_to_csv(display), | |
file_name='CSGO_Baselines_export.csv', | |
mime='text/csv', | |
) | |
with tab5: | |
if st.button("Reset Data", key='reset5'): | |
# Clear values from *all* all in-memory and on-disk data caches: | |
# i.e. clear values from both square and cube | |
st.cache_data.clear() | |
hold_display = two_map_load(two_map) | |
display = hold_display.set_index('Player') | |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) | |
st.download_button( | |
label="Export Baselines", | |
data=convert_df_to_csv(display), | |
file_name='CSGO_2_map_export.csv', | |
mime='text/csv', | |
) |