Spaces:
Running
Running
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import pymongo | |
import re | |
import os | |
from itertools import combinations | |
st.set_page_config(layout="wide") | |
def init_conn(): | |
uri = os.getenv('MONGO_URI') | |
if not uri: | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["NFL_Database"] | |
return db | |
db = init_conn() | |
game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}', | |
'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'} | |
team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}', | |
'5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'} | |
wrong_acro = ['WSH', 'AZ', 'CHW'] | |
right_acro = ['WAS', 'ARI', 'CWS'] | |
st.markdown(""" | |
<style> | |
/* Tab styling */ | |
.stElementContainer [data-baseweb="button-group"] { | |
gap: 2.000rem; | |
padding: 4px; | |
} | |
.stElementContainer [kind="segmented_control"] { | |
height: 2.000rem; | |
white-space: pre-wrap; | |
background-color: #DAA520; | |
color: white; | |
border-radius: 20px; | |
gap: 1px; | |
padding: 10px 20px; | |
font-weight: bold; | |
transition: all 0.3s ease; | |
} | |
.stElementContainer [kind="segmented_controlActive"] { | |
height: 3.000rem; | |
background-color: #DAA520; | |
border: 3px solid #FFD700; | |
border-radius: 10px; | |
color: black; | |
} | |
.stElementContainer [kind="segmented_control"]:hover { | |
background-color: #FFD700; | |
cursor: pointer; | |
} | |
div[data-baseweb="select"] > div { | |
background-color: #DAA520; | |
color: white; | |
} | |
</style>""", unsafe_allow_html=True) | |
def init_baselines(): | |
collection = db["Player_Baselines"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['name', 'Team', 'Opp', 'Position', 'Salary', 'team_plays', 'team_pass', 'team_rush', 'team_tds', 'team_pass_tds', 'team_rush_tds', 'dropbacks', 'pass_yards', 'pass_tds', | |
'rush_att', 'rush_yards', 'rush_tds', 'targets', 'rec', 'rec_yards', 'rec_tds', 'PPR', 'Half_PPR', 'Own']] | |
player_stats = raw_display[raw_display['Position'] != 'K'] | |
collection = db["DK_NFL_ROO"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display.rename(columns={'player_ID': 'player_id'}) | |
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', | |
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']] | |
load_display = raw_display[raw_display['Position'] != 'K'] | |
dk_roo_raw = load_display.dropna(subset=['Median']) | |
collection = db["FD_NFL_ROO"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display.rename(columns={'player_ID': 'player_id'}) | |
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', | |
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']] | |
load_display = raw_display[raw_display['Position'] != 'K'] | |
fd_roo_raw = load_display.dropna(subset=['Median']) | |
collection = db["DK_DFS_Stacks"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']] | |
dk_stacks_raw = raw_display.copy() | |
collection = db["FD_DFS_Stacks"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']] | |
fd_stacks_raw = raw_display.copy() | |
return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines() | |
app_load_reset_column, app_view_site_column = st.columns([1, 9]) | |
with app_load_reset_column: | |
if st.button("Load/Reset Data", key='reset_data_button'): | |
st.cache_data.clear() | |
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines() | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
with app_view_site_column: | |
with st.container(): | |
app_view_column, app_site_column = st.columns([3, 3]) | |
with app_view_column: | |
view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_selectbox') | |
with app_site_column: | |
site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_selectbox') | |
selected_tab = st.segmented_control( | |
"Select Tab", | |
options=["Stack Finder", "User Upload"], | |
selection_mode='single', | |
default='Stack Finder', | |
width='stretch', | |
label_visibility='collapsed', | |
key='tab_selector' | |
) | |
if selected_tab == 'Stack Finder': | |
with st.expander("Info and Filters"): | |
app_info_column, slate_choice_column, filtering_column, stack_info_column = st.columns(4) | |
with app_info_column: | |
if st.button("Load/Reset Data", key='reset1'): | |
st.cache_data.clear() | |
player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines() | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
st.info(f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST") | |
with slate_choice_column: | |
slate_var1 = st.radio("What slate are you working with?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate', 'User Upload'), key='slate_var1') | |
if slate_var1 == 'User Upload': | |
slate_var1 = st.session_state['proj_dataframe'] | |
else: | |
if site_var == 'Draftkings': | |
raw_baselines = dk_roo_raw | |
if slate_var1 == 'Main Slate': | |
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Main Slate'] | |
elif slate_var1 == 'Secondary Slate': | |
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Secondary Slate'] | |
elif slate_var1 == 'Late Slate': | |
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Late Slate'] | |
elif slate_var1 == 'Thurs-Mon Slate': | |
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Thurs-Mon Slate'] | |
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False) | |
qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB'] | |
elif site_var == 'Fanduel': | |
raw_baselines = fd_roo_raw | |
if slate_var1 == 'Main Slate': | |
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Main Slate'] | |
elif slate_var1 == 'Secondary Slate': | |
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Secondary Slate'] | |
elif slate_var1 == 'Late Slate': | |
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Late Slate'] | |
elif slate_var1 == 'Thurs-Mon Slate': | |
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Thurs-Mon Slate'] | |
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False) | |
qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB'] | |
with filtering_column: | |
split_var2 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('Full Slate Run', 'Specific Teams'), key='split_var2') | |
if split_var2 == 'Specific Teams': | |
team_var2 = st.multiselect('Which teams would you like to include in the analysis?', options = raw_baselines['Team'].unique(), key='team_var2') | |
elif split_var2 == 'Full Slate Run': | |
team_var2 = raw_baselines.Team.unique().tolist() | |
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['WR', 'TE', 'RB'], default = ['WR', 'TE', 'RB'], key='pos_var2') | |
with stack_info_column: | |
if site_var == 'Draftkings': | |
max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 50000, value = 35000, step = 100, key='max_sal2') | |
elif site_var == 'Fanduel': | |
max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 35000, value = 25000, step = 100, key='max_sal2') | |
size_var2 = st.selectbox('What size of stacks are you analyzing?', options = ['QB+1', 'QB+2', 'QB+3']) | |
if size_var2 == 'QB+1': | |
stack_size = 2 | |
if size_var2 == 'QB+2': | |
stack_size = 3 | |
if size_var2 == 'QB+3': | |
stack_size = 4 | |
team_dict = dict(zip(raw_baselines.Player, raw_baselines.Team)) | |
proj_dict = dict(zip(raw_baselines.Player, raw_baselines.Median)) | |
own_dict = dict(zip(raw_baselines.Player, raw_baselines.Own)) | |
cost_dict = dict(zip(raw_baselines.Player, raw_baselines.Salary)) | |
qb_dict = dict(zip(qb_lookup.Team, qb_lookup.Player)) | |
if st.button("Run Stack Analysis", key='run_stack_analysis'): | |
if site_var == 'Draftkings': | |
position_limits = { | |
'QB': 1, | |
'RB': 2, | |
'WR': 3, | |
'TE': 1, | |
'UTIL': 1, | |
'DST': 1, | |
} | |
max_salary = max_sal2 | |
max_players = 9 | |
else: | |
position_limits = { | |
'QB': 1, | |
'RB': 2, | |
'WR': 3, | |
'TE': 1, | |
'UTIL': 1, | |
'DST': 1, | |
} | |
max_salary = max_sal2 | |
max_players = 9 | |
stack_hold_container = st.empty() | |
comb_list = [] | |
raw_baselines = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var2 + ['QB']))] | |
# Create a position dictionary mapping players to their eligible positions | |
pos_dict = dict(zip(raw_baselines.Player, raw_baselines.Position)) | |
def is_valid_combination(combo): | |
# Count positions in this combination | |
position_counts = {pos: 0 for pos in position_limits.keys()} | |
# For each player in the combination | |
for player in combo: | |
# Get their eligible positions | |
player_positions = pos_dict[player].split('/') | |
for pos in player_positions: | |
position_counts[pos] += 1 | |
# Check if any position exceeds its limit | |
for pos, limit in position_limits.items(): | |
if position_counts[pos] > limit: | |
return False | |
return True | |
# Modify the combination generation code | |
comb_list = [] | |
for cur_team in team_var2: | |
working_baselines = raw_baselines | |
working_baselines = working_baselines[working_baselines['Team'] == cur_team] | |
working_baselines = working_baselines[working_baselines['Position'] != 'DST'] | |
working_baselines = working_baselines[working_baselines['Position'] != 'K'] | |
qb_var = qb_dict[cur_team] | |
order_list = working_baselines['Player'].unique() | |
comb = combinations(order_list, stack_size) | |
for i in list(comb): | |
if qb_var in i: | |
comb_list.append(i) | |
for i in list(comb): | |
if is_valid_combination(i): | |
comb_list.append(i) | |
comb_DF = pd.DataFrame(comb_list) | |
print(comb_DF.head(10)) | |
if stack_size == 2: | |
comb_DF['Team'] = comb_DF[0].map(team_dict) | |
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), | |
comb_DF[1].map(proj_dict)]) | |
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), | |
comb_DF[1].map(cost_dict)]) | |
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), | |
comb_DF[1].map(own_dict)]) | |
elif stack_size == 3: | |
comb_DF['Team'] = comb_DF[0].map(team_dict) | |
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), | |
comb_DF[1].map(proj_dict), | |
comb_DF[2].map(proj_dict)]) | |
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), | |
comb_DF[1].map(cost_dict), | |
comb_DF[2].map(cost_dict)]) | |
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), | |
comb_DF[1].map(own_dict), | |
comb_DF[2].map(own_dict)]) | |
elif stack_size == 4: | |
comb_DF['Team'] = comb_DF[0].map(team_dict) | |
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), | |
comb_DF[1].map(proj_dict), | |
comb_DF[2].map(proj_dict), | |
comb_DF[3].map(proj_dict)]) | |
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), | |
comb_DF[1].map(cost_dict), | |
comb_DF[2].map(cost_dict), | |
comb_DF[3].map(cost_dict)]) | |
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), | |
comb_DF[1].map(own_dict), | |
comb_DF[2].map(own_dict), | |
comb_DF[3].map(own_dict)]) | |
elif stack_size == 5: | |
comb_DF['Team'] = comb_DF[0].map(team_dict) | |
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict), | |
comb_DF[1].map(proj_dict), | |
comb_DF[2].map(proj_dict), | |
comb_DF[3].map(proj_dict), | |
comb_DF[4].map(proj_dict)]) | |
comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict), | |
comb_DF[1].map(cost_dict), | |
comb_DF[2].map(cost_dict), | |
comb_DF[3].map(cost_dict), | |
comb_DF[4].map(cost_dict)]) | |
comb_DF['Own%'] = sum([comb_DF[0].map(own_dict), | |
comb_DF[1].map(own_dict), | |
comb_DF[2].map(own_dict), | |
comb_DF[3].map(own_dict), | |
comb_DF[4].map(own_dict)]) | |
comb_DF = comb_DF.sort_values(by='Proj', ascending=False) | |
comb_DF = comb_DF.loc[comb_DF['Salary'] <= max_sal2] | |
cut_var = 0 | |
if stack_size == 2: | |
while cut_var <= int(len(comb_DF)): | |
try: | |
if int(cut_var) == 0: | |
cur_proj = float(comb_DF.iat[cut_var, 3]) | |
cur_own = float(comb_DF.iat[cut_var, 5]) | |
elif int(cut_var) >= 1: | |
check_own = float(comb_DF.iat[cut_var, 5]) | |
if check_own > cur_own: | |
comb_DF = comb_DF.drop([cut_var]) | |
cur_own = cur_own | |
cut_var = cut_var - 1 | |
comb_DF = comb_DF.reset_index() | |
comb_DF = comb_DF.drop(['index'], axis=1) | |
elif check_own <= cur_own: | |
cur_own = float(comb_DF.iat[cut_var, 5]) | |
cut_var = cut_var | |
cut_var += 1 | |
except: | |
cut_var += 1 | |
elif stack_size == 3: | |
while cut_var <= int(len(comb_DF)): | |
try: | |
if int(cut_var) == 0: | |
cur_proj = float(comb_DF.iat[cut_var,4]) | |
cur_own = float(comb_DF.iat[cut_var,6]) | |
elif int(cut_var) >= 1: | |
check_own = float(comb_DF.iat[cut_var,6]) | |
if check_own > cur_own: | |
comb_DF = comb_DF.drop([cut_var]) | |
cur_own = cur_own | |
cut_var = cut_var - 1 | |
comb_DF = comb_DF.reset_index() | |
comb_DF = comb_DF.drop(['index'], axis=1) | |
elif check_own <= cur_own: | |
cur_own = float(comb_DF.iat[cut_var,6]) | |
cut_var = cut_var | |
cut_var += 1 | |
except: | |
cut_var += 1 | |
elif stack_size == 4: | |
while cut_var <= int(len(comb_DF)): | |
try: | |
if int(cut_var) == 0: | |
cur_proj = float(comb_DF.iat[cut_var,5]) | |
cur_own = float(comb_DF.iat[cut_var,7]) | |
elif int(cut_var) >= 1: | |
check_own = float(comb_DF.iat[cut_var,7]) | |
if check_own > cur_own: | |
comb_DF = comb_DF.drop([cut_var]) | |
cur_own = cur_own | |
cut_var = cut_var - 1 | |
comb_DF = comb_DF.reset_index() | |
comb_DF = comb_DF.drop(['index'], axis=1) | |
elif check_own <= cur_own: | |
cur_own = float(comb_DF.iat[cut_var,7]) | |
cut_var = cut_var | |
cut_var += 1 | |
except: | |
cut_var += 1 | |
elif stack_size == 5: | |
while cut_var <= int(len(comb_DF)): | |
try: | |
if int(cut_var) == 0: | |
cur_proj = float(comb_DF.iat[cut_var,6]) | |
cur_own = float(comb_DF.iat[cut_var,8]) | |
elif int(cut_var) >= 1: | |
check_own = float(comb_DF.iat[cut_var,8]) | |
if check_own > cur_own: | |
comb_DF = comb_DF.drop([cut_var]) | |
cur_own = cur_own | |
cut_var = cut_var - 1 | |
comb_DF = comb_DF.reset_index() | |
comb_DF = comb_DF.drop(['index'], axis=1) | |
elif check_own <= cur_own: | |
cur_own = float(comb_DF.iat[cut_var,8]) | |
cut_var = cut_var | |
cut_var += 1 | |
except: | |
cut_var += 1 | |
st.session_state['display_frame'] = comb_DF | |
if 'display_frame' in st.session_state: | |
st.dataframe(st.session_state['display_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), hide_index=True, use_container_width = True) | |
st.download_button( | |
label="Export Tables", | |
data=convert_df_to_csv(st.session_state['display_frame']), | |
file_name='NFL_Stack_Options_export.csv', | |
mime='text/csv', | |
) | |
else: | |
st.info("When you run the stack analysis, the results will be displayed here. Open up the 'Info and Filters' tab to check the settings.") | |
if selected_tab == 'User Upload': | |
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.") | |
col1, col2 = st.columns([1, 5]) | |
with col1: | |
proj_file = st.file_uploader("Upload Projections", key = 'proj_uploader') | |
if proj_file is not None: | |
try: | |
st.session_state['proj_dataframe'] = pd.read_csv(proj_file) | |
except: | |
st.session_state['proj_dataframe'] = pd.read_excel(proj_file) | |
with col2: | |
if proj_file is not None: | |
st.dataframe(st.session_state['proj_dataframe'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) |