Spaces:
Sleeping
Sleeping
import streamlit as st | |
from tensorflow.keras.models import load_model | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
import tensorflow as tf | |
model_path = "my_cnn_model.h5" | |
model = tf.keras.models.load_model(model_path) | |
def process_image(img): | |
img = cv2.resize(img, (170, 170)) | |
img = img / 255.0 | |
img = np.expand_dims(img, axis=0) | |
return img | |
st.title('Kanser Resmi Siniflandirma :cancer:') | |
st.write('Resim seç ve model kanser olup olmadigini tahmin etsin') | |
file = st.file_uploader('Bir Resim Seç', type=['jpeg', 'jpg', 'png']) | |
if file is not None: | |
img = Image.open(file) | |
st.image(img, caption='Yuklenen resim') | |
img = np.array(img) | |
if img.shape[2] == 4: | |
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) | |
image = process_image(img) | |
prediction = model.predict(image) | |
prediction_class = np.argmax(prediction) | |
class_names = ['Kanser Değil', 'Kanser'] | |
st.write(class_names[prediction_class]) | |