DeriK / app.py
MucahitSancar's picture
Upload app.py
2fb61d7 verified
import streamlit as st
from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np
import cv2
import tensorflow as tf
model_path = "my_cnn_model.h5"
model = tf.keras.models.load_model(model_path)
def process_image(img):
img = cv2.resize(img, (170, 170))
img = img / 255.0
img = np.expand_dims(img, axis=0)
return img
st.title('Kanser Resmi Siniflandirma :cancer:')
st.write('Resim seç ve model kanser olup olmadigini tahmin etsin')
file = st.file_uploader('Bir Resim Seç', type=['jpeg', 'jpg', 'png'])
if file is not None:
img = Image.open(file)
st.image(img, caption='Yuklenen resim')
img = np.array(img)
if img.shape[2] == 4:
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
image = process_image(img)
prediction = model.predict(image)
prediction_class = np.argmax(prediction)
class_names = ['Kanser Değil', 'Kanser']
st.write(class_names[prediction_class])