import streamlit as st from tensorflow.keras.models import load_model from PIL import Image import numpy as np import cv2 import tensorflow as tf model_path = "my_cnn_model.h5" model = tf.keras.models.load_model(model_path) def process_image(img): img = cv2.resize(img, (170, 170)) img = img / 255.0 img = np.expand_dims(img, axis=0) return img st.title('Kanser Resmi Siniflandirma :cancer:') st.write('Resim seç ve model kanser olup olmadigini tahmin etsin') file = st.file_uploader('Bir Resim Seç', type=['jpeg', 'jpg', 'png']) if file is not None: img = Image.open(file) st.image(img, caption='Yuklenen resim') img = np.array(img) if img.shape[2] == 4: img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) image = process_image(img) prediction = model.predict(image) prediction_class = np.argmax(prediction) class_names = ['Kanser Değil', 'Kanser'] st.write(class_names[prediction_class])