Spaces:
Running
Running
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Any, Callable, List, Optional, Sequence, Tuple, Union | |
import mmcv | |
from mmengine.dataset import BaseDataset | |
from mmocr.registry import DATASETS | |
class RecogLMDBDataset(BaseDataset): | |
r"""RecogLMDBDataset for text recognition. | |
The annotation format should be in lmdb format. The lmdb file should | |
contain three keys: 'num-samples', 'label-xxxxxxxxx' and 'image-xxxxxxxxx', | |
where 'xxxxxxxxx' is the index of the image. The value of 'num-samples' is | |
the total number of images. The value of 'label-xxxxxxx' is the text label | |
of the image, and the value of 'image-xxxxxxx' is the image data. | |
following keys: | |
Each item fetched from this dataset will be a dict containing the | |
following keys: | |
- img (ndarray): The loaded image. | |
- img_path (str): The image key. | |
- instances (list[dict]): The list of annotations for the image. | |
Args: | |
ann_file (str): Annotation file path. Defaults to ''. | |
img_color_type (str): The flag argument for :func:``mmcv.imfrombytes``, | |
which determines how the image bytes will be parsed. Defaults to | |
'color'. | |
metainfo (dict, optional): Meta information for dataset, such as class | |
information. Defaults to None. | |
data_root (str): The root directory for ``data_prefix`` and | |
``ann_file``. Defaults to ''. | |
data_prefix (dict): Prefix for training data. Defaults to | |
``dict(img_path='')``. | |
filter_cfg (dict, optional): Config for filter data. Defaults to None. | |
indices (int or Sequence[int], optional): Support using first few | |
data in annotation file to facilitate training/testing on a smaller | |
dataset. Defaults to None which means using all ``data_infos``. | |
serialize_data (bool, optional): Whether to hold memory using | |
serialized objects, when enabled, data loader workers can use | |
shared RAM from master process instead of making a copy. Defaults | |
to True. | |
pipeline (list, optional): Processing pipeline. Defaults to []. | |
test_mode (bool, optional): ``test_mode=True`` means in test phase. | |
Defaults to False. | |
lazy_init (bool, optional): Whether to load annotation during | |
instantiation. In some cases, such as visualization, only the meta | |
information of the dataset is needed, which is not necessary to | |
load annotation file. ``RecogLMDBDataset`` can skip load | |
annotations to save time by set ``lazy_init=False``. | |
Defaults to False. | |
max_refetch (int, optional): If ``RecogLMDBdataset.prepare_data`` get a | |
None img. The maximum extra number of cycles to get a valid | |
image. Defaults to 1000. | |
""" | |
def __init__( | |
self, | |
ann_file: str = '', | |
img_color_type: str = 'color', | |
metainfo: Optional[dict] = None, | |
data_root: Optional[str] = '', | |
data_prefix: dict = dict(img_path=''), | |
filter_cfg: Optional[dict] = None, | |
indices: Optional[Union[int, Sequence[int]]] = None, | |
serialize_data: bool = True, | |
pipeline: List[Union[dict, Callable]] = [], | |
test_mode: bool = False, | |
lazy_init: bool = False, | |
max_refetch: int = 1000, | |
) -> None: | |
super().__init__( | |
ann_file=ann_file, | |
metainfo=metainfo, | |
data_root=data_root, | |
data_prefix=data_prefix, | |
filter_cfg=filter_cfg, | |
indices=indices, | |
serialize_data=serialize_data, | |
pipeline=pipeline, | |
test_mode=test_mode, | |
lazy_init=lazy_init, | |
max_refetch=max_refetch) | |
self.color_type = img_color_type | |
def load_data_list(self) -> List[dict]: | |
"""Load annotations from an annotation file named as ``self.ann_file`` | |
Returns: | |
List[dict]: A list of annotation. | |
""" | |
if not hasattr(self, 'env'): | |
self._make_env() | |
with self.env.begin(write=False) as txn: | |
self.total_number = int( | |
txn.get(b'num-samples').decode('utf-8')) | |
data_list = [] | |
with self.env.begin(write=False) as txn: | |
for i in range(self.total_number): | |
idx = i + 1 | |
label_key = f'label-{idx:09d}' | |
img_key = f'image-{idx:09d}' | |
text = txn.get(label_key.encode('utf-8')).decode('utf-8') | |
line = [img_key, text] | |
data_list.append(self.parse_data_info(line)) | |
return data_list | |
def parse_data_info(self, | |
raw_anno_info: Tuple[Optional[str], | |
str]) -> Union[dict, List[dict]]: | |
"""Parse raw annotation to target format. | |
Args: | |
raw_anno_info (str): One raw data information loaded | |
from ``ann_file``. | |
Returns: | |
(dict): Parsed annotation. | |
""" | |
data_info = {} | |
img_key, text = raw_anno_info | |
data_info['img_key'] = img_key | |
data_info['instances'] = [dict(text=text)] | |
return data_info | |
def prepare_data(self, idx) -> Any: | |
"""Get data processed by ``self.pipeline``. | |
Args: | |
idx (int): The index of ``data_info``. | |
Returns: | |
Any: Depends on ``self.pipeline``. | |
""" | |
data_info = self.get_data_info(idx) | |
with self.env.begin(write=False) as txn: | |
img_bytes = txn.get(data_info['img_key'].encode('utf-8')) | |
if img_bytes is None: | |
return None | |
data_info['img'] = mmcv.imfrombytes( | |
img_bytes, flag=self.color_type) | |
return self.pipeline(data_info) | |
def _make_env(self): | |
"""Create lmdb environment from self.ann_file and save it to | |
``self.env``. | |
Returns: | |
Lmdb environment. | |
""" | |
try: | |
import lmdb | |
except ImportError: | |
raise ImportError( | |
'Please install lmdb to enable RecogLMDBDataset.') | |
if hasattr(self, 'env'): | |
return | |
self.env = lmdb.open( | |
self.ann_file, | |
max_readers=1, | |
readonly=True, | |
lock=False, | |
readahead=False, | |
meminit=False, | |
) | |
def close(self): | |
"""Close lmdb environment.""" | |
if hasattr(self, 'env'): | |
self.env.close() | |
del self.env | |