Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	A newer version of the Gradio SDK is available:
									5.49.1
metadata
			title: Whatscooking Advisor
emoji: ⚡
colorFrom: indigo
colorTo: red
sdk: gradio
sdk_version: 4.37.2
app_file: app.py
pinned: false
license: apache-2.0
This simple restaurant planner is designed to communicate with MongoDB Atlas Vector Search with the loaded Restaurant data set.
It uses OpenAI small text embeddings (256 dimesnsions) to query the database for semantic similarity search.
How to setup your own
- Create an Atlas cluter (free clusters are available)
- Load the dataset using the ingest.pyscript with your connection string.
- Deploy the relevant Vector Index on whatscooking.smart_tripsaggregated collection "name" :vector_index.
{
 "fields": [
   {
     "numDimensions": 256,
     "path": "embedding",
     "similarity": "cosine",
     "type": "vector"
   },
   {
     "path": "searchTrip",
     "type": "filter"
   }
 ]
}
Create a 2dsphere index on restaurants collection to allow geo queries on location.coordinates:
db.restaurants.createIndex({'location.coordinates' : "2dsphere"})
- Whitelist access from everywhere (0.0.0.0/0)
- Locate your cluster connection URI
- Obtain your Open AI api key
- "Duplicate" this space and input- MONGODB_ATLAS_CLUSTER_URI- Your Atlas Cluster connection string
- OPENAI_API_KEY- Open AI API key
 
Build and use the planner!
