Create core/quality.py
Browse files- core/quality.py +409 -0
core/quality.py
ADDED
|
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Quality analysis and metrics for BackgroundFX Pro.
|
| 3 |
+
Provides REAL metrics instead of fake 100% values.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import cv2
|
| 8 |
+
import torch
|
| 9 |
+
from typing import Dict, List, Optional, Tuple, Any
|
| 10 |
+
from dataclasses import dataclass, field
|
| 11 |
+
from collections import deque
|
| 12 |
+
import logging
|
| 13 |
+
from scipy import signal, ndimage
|
| 14 |
+
from skimage import metrics as skmetrics
|
| 15 |
+
import json
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
from datetime import datetime
|
| 18 |
+
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@dataclass
|
| 23 |
+
class QualityMetrics:
|
| 24 |
+
"""Real quality metrics container."""
|
| 25 |
+
# Edge Quality
|
| 26 |
+
edge_accuracy: float = 0.0
|
| 27 |
+
edge_smoothness: float = 0.0
|
| 28 |
+
edge_completeness: float = 0.0
|
| 29 |
+
|
| 30 |
+
# Temporal Quality
|
| 31 |
+
temporal_stability: float = 0.0
|
| 32 |
+
temporal_consistency: float = 0.0
|
| 33 |
+
flicker_score: float = 0.0
|
| 34 |
+
|
| 35 |
+
# Mask Quality
|
| 36 |
+
mask_coverage: float = 0.0
|
| 37 |
+
mask_accuracy: float = 0.0
|
| 38 |
+
mask_confidence: float = 0.0
|
| 39 |
+
hole_ratio: float = 0.0
|
| 40 |
+
|
| 41 |
+
# Detail Preservation
|
| 42 |
+
detail_preservation: float = 0.0
|
| 43 |
+
hair_detail_score: float = 0.0
|
| 44 |
+
texture_quality: float = 0.0
|
| 45 |
+
|
| 46 |
+
# Overall Scores
|
| 47 |
+
overall_quality: float = 0.0
|
| 48 |
+
processing_confidence: float = 0.0
|
| 49 |
+
|
| 50 |
+
# Detailed breakdown
|
| 51 |
+
breakdown: Dict[str, float] = field(default_factory=dict)
|
| 52 |
+
warnings: List[str] = field(default_factory=list)
|
| 53 |
+
|
| 54 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 55 |
+
"""Convert to dictionary."""
|
| 56 |
+
return {
|
| 57 |
+
'edge_accuracy': round(self.edge_accuracy, 3),
|
| 58 |
+
'edge_smoothness': round(self.edge_smoothness, 3),
|
| 59 |
+
'edge_completeness': round(self.edge_completeness, 3),
|
| 60 |
+
'temporal_stability': round(self.temporal_stability, 3),
|
| 61 |
+
'temporal_consistency': round(self.temporal_consistency, 3),
|
| 62 |
+
'flicker_score': round(self.flicker_score, 3),
|
| 63 |
+
'mask_coverage': round(self.mask_coverage, 3),
|
| 64 |
+
'mask_accuracy': round(self.mask_accuracy, 3),
|
| 65 |
+
'mask_confidence': round(self.mask_confidence, 3),
|
| 66 |
+
'hole_ratio': round(self.hole_ratio, 3),
|
| 67 |
+
'detail_preservation': round(self.detail_preservation, 3),
|
| 68 |
+
'hair_detail_score': round(self.hair_detail_score, 3),
|
| 69 |
+
'texture_quality': round(self.texture_quality, 3),
|
| 70 |
+
'overall_quality': round(self.overall_quality, 3),
|
| 71 |
+
'processing_confidence': round(self.processing_confidence, 3),
|
| 72 |
+
'breakdown': self.breakdown,
|
| 73 |
+
'warnings': self.warnings
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
def get_summary(self) -> str:
|
| 77 |
+
"""Get human-readable summary."""
|
| 78 |
+
status = "Excellent" if self.overall_quality > 0.9 else \
|
| 79 |
+
"Good" if self.overall_quality > 0.75 else \
|
| 80 |
+
"Fair" if self.overall_quality > 0.6 else "Poor"
|
| 81 |
+
|
| 82 |
+
return (f"Quality: {status} ({self.overall_quality:.1%})\n"
|
| 83 |
+
f"Edge: {self.edge_accuracy:.1%} | "
|
| 84 |
+
f"Temporal: {self.temporal_stability:.1%} | "
|
| 85 |
+
f"Detail: {self.detail_preservation:.1%}")
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@dataclass
|
| 89 |
+
class QualityConfig:
|
| 90 |
+
"""Configuration for quality analysis."""
|
| 91 |
+
enable_deep_analysis: bool = True
|
| 92 |
+
temporal_window: int = 5
|
| 93 |
+
edge_threshold: float = 0.1
|
| 94 |
+
min_confidence: float = 0.6
|
| 95 |
+
detect_artifacts: bool = True
|
| 96 |
+
compute_ssim: bool = True
|
| 97 |
+
compute_psnr: bool = True
|
| 98 |
+
save_reports: bool = True
|
| 99 |
+
report_dir: str = "LOGS/quality_reports"
|
| 100 |
+
warning_thresholds: Dict[str, float] = field(default_factory=lambda: {
|
| 101 |
+
'edge_accuracy': 0.7,
|
| 102 |
+
'temporal_stability': 0.75,
|
| 103 |
+
'mask_accuracy': 0.8,
|
| 104 |
+
'detail_preservation': 0.7
|
| 105 |
+
})
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class QualityAnalyzer:
|
| 109 |
+
"""Comprehensive quality analysis system."""
|
| 110 |
+
|
| 111 |
+
def __init__(self, config: Optional[QualityConfig] = None):
|
| 112 |
+
self.config = config or QualityConfig()
|
| 113 |
+
self.frame_buffer = deque(maxlen=self.config.temporal_window)
|
| 114 |
+
self.mask_buffer = deque(maxlen=self.config.temporal_window)
|
| 115 |
+
self.metrics_history = deque(maxlen=100)
|
| 116 |
+
self.frame_count = 0
|
| 117 |
+
|
| 118 |
+
# Initialize analyzers
|
| 119 |
+
self.edge_analyzer = EdgeQualityAnalyzer()
|
| 120 |
+
self.temporal_analyzer = TemporalQualityAnalyzer()
|
| 121 |
+
self.detail_analyzer = DetailPreservationAnalyzer()
|
| 122 |
+
self.artifact_detector = ArtifactDetector()
|
| 123 |
+
|
| 124 |
+
# Create report directory
|
| 125 |
+
if self.config.save_reports:
|
| 126 |
+
Path(self.config.report_dir).mkdir(parents=True, exist_ok=True)
|
| 127 |
+
|
| 128 |
+
def analyze_frame(self,
|
| 129 |
+
original_frame: np.ndarray,
|
| 130 |
+
processed_frame: np.ndarray,
|
| 131 |
+
mask: np.ndarray,
|
| 132 |
+
alpha: Optional[np.ndarray] = None) -> QualityMetrics:
|
| 133 |
+
"""Analyze frame quality with REAL metrics."""
|
| 134 |
+
self.frame_count += 1
|
| 135 |
+
metrics = QualityMetrics()
|
| 136 |
+
|
| 137 |
+
# Add to buffers
|
| 138 |
+
self.frame_buffer.append(processed_frame)
|
| 139 |
+
self.mask_buffer.append(mask)
|
| 140 |
+
|
| 141 |
+
# 1. Edge Quality Analysis
|
| 142 |
+
edge_metrics = self.edge_analyzer.analyze(original_frame, mask, alpha)
|
| 143 |
+
metrics.edge_accuracy = edge_metrics['accuracy']
|
| 144 |
+
metrics.edge_smoothness = edge_metrics['smoothness']
|
| 145 |
+
metrics.edge_completeness = edge_metrics['completeness']
|
| 146 |
+
|
| 147 |
+
# 2. Temporal Quality (if we have history)
|
| 148 |
+
if len(self.mask_buffer) >= 2:
|
| 149 |
+
temporal_metrics = self.temporal_analyzer.analyze(
|
| 150 |
+
self.mask_buffer, self.frame_buffer
|
| 151 |
+
)
|
| 152 |
+
metrics.temporal_stability = temporal_metrics['stability']
|
| 153 |
+
metrics.temporal_consistency = temporal_metrics['consistency']
|
| 154 |
+
metrics.flicker_score = temporal_metrics['flicker']
|
| 155 |
+
else:
|
| 156 |
+
# First frame defaults
|
| 157 |
+
metrics.temporal_stability = 1.0
|
| 158 |
+
metrics.temporal_consistency = 1.0
|
| 159 |
+
metrics.flicker_score = 0.0
|
| 160 |
+
|
| 161 |
+
# 3. Mask Quality Analysis
|
| 162 |
+
mask_metrics = self._analyze_mask_quality(mask, alpha)
|
| 163 |
+
metrics.mask_coverage = mask_metrics['coverage']
|
| 164 |
+
metrics.mask_accuracy = mask_metrics['accuracy']
|
| 165 |
+
metrics.mask_confidence = mask_metrics['confidence']
|
| 166 |
+
metrics.hole_ratio = mask_metrics['hole_ratio']
|
| 167 |
+
|
| 168 |
+
# 4. Detail Preservation
|
| 169 |
+
detail_metrics = self.detail_analyzer.analyze(
|
| 170 |
+
original_frame, processed_frame, mask
|
| 171 |
+
)
|
| 172 |
+
metrics.detail_preservation = detail_metrics['overall']
|
| 173 |
+
metrics.hair_detail_score = detail_metrics['hair_detail']
|
| 174 |
+
metrics.texture_quality = detail_metrics['texture']
|
| 175 |
+
|
| 176 |
+
# 5. Artifact Detection
|
| 177 |
+
if self.config.detect_artifacts:
|
| 178 |
+
artifacts = self.artifact_detector.detect(processed_frame, mask)
|
| 179 |
+
if artifacts['found']:
|
| 180 |
+
for artifact in artifacts['types']:
|
| 181 |
+
metrics.warnings.append(f"Artifact detected: {artifact}")
|
| 182 |
+
|
| 183 |
+
# 6. Compute Overall Quality (weighted average)
|
| 184 |
+
metrics.overall_quality = self._compute_overall_quality(metrics)
|
| 185 |
+
metrics.processing_confidence = self._compute_confidence(metrics)
|
| 186 |
+
|
| 187 |
+
# 7. Generate warnings based on thresholds
|
| 188 |
+
self._generate_warnings(metrics)
|
| 189 |
+
|
| 190 |
+
# 8. Store in history
|
| 191 |
+
self.metrics_history.append(metrics)
|
| 192 |
+
|
| 193 |
+
# 9. Save report if configured
|
| 194 |
+
if self.config.save_reports and self.frame_count % 30 == 0:
|
| 195 |
+
self._save_report(metrics)
|
| 196 |
+
|
| 197 |
+
return metrics
|
| 198 |
+
|
| 199 |
+
def _analyze_mask_quality(self, mask: np.ndarray,
|
| 200 |
+
alpha: Optional[np.ndarray] = None) -> Dict[str, float]:
|
| 201 |
+
"""Analyze mask quality metrics."""
|
| 202 |
+
h, w = mask.shape[:2]
|
| 203 |
+
total_pixels = h * w
|
| 204 |
+
|
| 205 |
+
# Coverage ratio
|
| 206 |
+
coverage = np.sum(mask > 0.5) / total_pixels
|
| 207 |
+
|
| 208 |
+
# Hole detection
|
| 209 |
+
mask_binary = (mask > 0.5).astype(np.uint8)
|
| 210 |
+
|
| 211 |
+
# Find contours
|
| 212 |
+
contours, _ = cv2.findContours(
|
| 213 |
+
mask_binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
# Find holes (internal contours)
|
| 217 |
+
hole_area = 0
|
| 218 |
+
if len(contours) > 0:
|
| 219 |
+
# Create filled mask
|
| 220 |
+
filled = np.zeros_like(mask_binary)
|
| 221 |
+
cv2.drawContours(filled, contours, -1, 1, -1)
|
| 222 |
+
|
| 223 |
+
# Holes are the difference
|
| 224 |
+
holes = filled - mask_binary
|
| 225 |
+
hole_area = np.sum(holes) / np.sum(filled) if np.sum(filled) > 0 else 0
|
| 226 |
+
|
| 227 |
+
# Accuracy (based on gradient consistency)
|
| 228 |
+
gradient_x = cv2.Sobel(mask, cv2.CV_64F, 1, 0, ksize=3)
|
| 229 |
+
gradient_y = cv2.Sobel(mask, cv2.CV_64F, 0, 1, ksize=3)
|
| 230 |
+
gradient_mag = np.sqrt(gradient_x**2 + gradient_y**2)
|
| 231 |
+
|
| 232 |
+
# Good masks have smooth gradients
|
| 233 |
+
gradient_smoothness = 1.0 - np.std(gradient_mag) / (np.mean(gradient_mag) + 1e-6)
|
| 234 |
+
accuracy = np.clip(gradient_smoothness, 0, 1)
|
| 235 |
+
|
| 236 |
+
# Confidence (alpha vs mask consistency if alpha provided)
|
| 237 |
+
if alpha is not None:
|
| 238 |
+
diff = np.abs(alpha - mask)
|
| 239 |
+
confidence = 1.0 - np.mean(diff)
|
| 240 |
+
else:
|
| 241 |
+
# Use mask value distribution as confidence
|
| 242 |
+
hist, _ = np.histogram(mask.flatten(), bins=10, range=(0, 1))
|
| 243 |
+
hist = hist / hist.sum()
|
| 244 |
+
# High confidence = values clustered near 0 or 1
|
| 245 |
+
confidence = (hist[0] + hist[-1]) / 2.0
|
| 246 |
+
|
| 247 |
+
return {
|
| 248 |
+
'coverage': coverage,
|
| 249 |
+
'accuracy': accuracy,
|
| 250 |
+
'confidence': confidence,
|
| 251 |
+
'hole_ratio': hole_area
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
def _compute_overall_quality(self, metrics: QualityMetrics) -> float:
|
| 255 |
+
"""Compute weighted overall quality score."""
|
| 256 |
+
weights = {
|
| 257 |
+
'edge': 0.25,
|
| 258 |
+
'temporal': 0.25,
|
| 259 |
+
'mask': 0.25,
|
| 260 |
+
'detail': 0.25
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
# Component scores
|
| 264 |
+
edge_score = np.mean([
|
| 265 |
+
metrics.edge_accuracy,
|
| 266 |
+
metrics.edge_smoothness,
|
| 267 |
+
metrics.edge_completeness
|
| 268 |
+
])
|
| 269 |
+
|
| 270 |
+
temporal_score = np.mean([
|
| 271 |
+
metrics.temporal_stability,
|
| 272 |
+
metrics.temporal_consistency,
|
| 273 |
+
1.0 - metrics.flicker_score # Invert flicker
|
| 274 |
+
])
|
| 275 |
+
|
| 276 |
+
mask_score = np.mean([
|
| 277 |
+
metrics.mask_accuracy,
|
| 278 |
+
metrics.mask_confidence,
|
| 279 |
+
1.0 - metrics.hole_ratio # Invert hole ratio
|
| 280 |
+
])
|
| 281 |
+
|
| 282 |
+
detail_score = np.mean([
|
| 283 |
+
metrics.detail_preservation,
|
| 284 |
+
metrics.hair_detail_score,
|
| 285 |
+
metrics.texture_quality
|
| 286 |
+
])
|
| 287 |
+
|
| 288 |
+
# Weighted average
|
| 289 |
+
overall = (
|
| 290 |
+
weights['edge'] * edge_score +
|
| 291 |
+
weights['temporal'] * temporal_score +
|
| 292 |
+
weights['mask'] * mask_score +
|
| 293 |
+
weights['detail'] * detail_score
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# Apply penalties for warnings
|
| 297 |
+
penalty = len(metrics.warnings) * 0.05
|
| 298 |
+
overall = max(0, overall - penalty)
|
| 299 |
+
|
| 300 |
+
return np.clip(overall, 0, 1)
|
| 301 |
+
|
| 302 |
+
def _compute_confidence(self, metrics: QualityMetrics) -> float:
|
| 303 |
+
"""Compute processing confidence."""
|
| 304 |
+
# Factors that affect confidence
|
| 305 |
+
factors = []
|
| 306 |
+
|
| 307 |
+
# High edge accuracy increases confidence
|
| 308 |
+
factors.append(metrics.edge_accuracy)
|
| 309 |
+
|
| 310 |
+
# Good temporal stability increases confidence
|
| 311 |
+
factors.append(metrics.temporal_stability)
|
| 312 |
+
|
| 313 |
+
# Low hole ratio increases confidence
|
| 314 |
+
factors.append(1.0 - metrics.hole_ratio)
|
| 315 |
+
|
| 316 |
+
# Mask confidence directly affects overall confidence
|
| 317 |
+
factors.append(metrics.mask_confidence)
|
| 318 |
+
|
| 319 |
+
# No warnings increases confidence
|
| 320 |
+
warning_factor = 1.0 if len(metrics.warnings) == 0 else 0.8
|
| 321 |
+
factors.append(warning_factor)
|
| 322 |
+
|
| 323 |
+
return np.mean(factors)
|
| 324 |
+
|
| 325 |
+
def _generate_warnings(self, metrics: QualityMetrics):
|
| 326 |
+
"""Generate warnings based on quality thresholds."""
|
| 327 |
+
for metric_name, threshold in self.config.warning_thresholds.items():
|
| 328 |
+
if hasattr(metrics, metric_name):
|
| 329 |
+
value = getattr(metrics, metric_name)
|
| 330 |
+
if value < threshold:
|
| 331 |
+
metrics.warnings.append(
|
| 332 |
+
f"Low {metric_name.replace('_', ' ')}: {value:.1%} < {threshold:.1%}"
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
def _save_report(self, metrics: QualityMetrics):
|
| 336 |
+
"""Save quality report to file."""
|
| 337 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 338 |
+
report_path = Path(self.config.report_dir) / f"quality_report_{timestamp}.json"
|
| 339 |
+
|
| 340 |
+
report = {
|
| 341 |
+
'timestamp': timestamp,
|
| 342 |
+
'frame_count': self.frame_count,
|
| 343 |
+
'metrics': metrics.to_dict(),
|
| 344 |
+
'config': {
|
| 345 |
+
'temporal_window': self.config.temporal_window,
|
| 346 |
+
'edge_threshold': self.config.edge_threshold,
|
| 347 |
+
'min_confidence': self.config.min_confidence
|
| 348 |
+
}
|
| 349 |
+
}
|
| 350 |
+
|
| 351 |
+
with open(report_path, 'w') as f:
|
| 352 |
+
json.dump(report, f, indent=2)
|
| 353 |
+
|
| 354 |
+
logger.info(f"Quality report saved to {report_path}")
|
| 355 |
+
|
| 356 |
+
def get_statistics(self) -> Dict[str, Any]:
|
| 357 |
+
"""Get quality statistics over time."""
|
| 358 |
+
if not self.metrics_history:
|
| 359 |
+
return {}
|
| 360 |
+
|
| 361 |
+
# Compute statistics
|
| 362 |
+
all_metrics = list(self.metrics_history)
|
| 363 |
+
|
| 364 |
+
stats = {
|
| 365 |
+
'average_quality': np.mean([m.overall_quality for m in all_metrics]),
|
| 366 |
+
'min_quality': np.min([m.overall_quality for m in all_metrics]),
|
| 367 |
+
'max_quality': np.max([m.overall_quality for m in all_metrics]),
|
| 368 |
+
'std_quality': np.std([m.overall_quality for m in all_metrics]),
|
| 369 |
+
'total_warnings': sum(len(m.warnings) for m in all_metrics),
|
| 370 |
+
'frames_analyzed': len(all_metrics)
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
return stats
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
class EdgeQualityAnalyzer:
|
| 377 |
+
"""Analyzes edge quality in masks."""
|
| 378 |
+
|
| 379 |
+
def analyze(self, image: np.ndarray, mask: np.ndarray,
|
| 380 |
+
alpha: Optional[np.ndarray] = None) -> Dict[str, float]:
|
| 381 |
+
"""Analyze edge quality metrics."""
|
| 382 |
+
# Convert to grayscale if needed
|
| 383 |
+
if len(image.shape) == 3:
|
| 384 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 385 |
+
else:
|
| 386 |
+
gray = image
|
| 387 |
+
|
| 388 |
+
# Detect edges in image
|
| 389 |
+
image_edges = cv2.Canny(gray, 50, 150) / 255.0
|
| 390 |
+
|
| 391 |
+
# Detect edges in mask
|
| 392 |
+
mask_uint8 = (mask * 255).astype(np.uint8)
|
| 393 |
+
mask_edges = cv2.Canny(mask_uint8, 50, 150) / 255.0
|
| 394 |
+
|
| 395 |
+
# Edge accuracy: how well mask edges align with image edges
|
| 396 |
+
overlap = np.logical_and(image_edges > 0, mask_edges > 0)
|
| 397 |
+
accuracy = np.sum(overlap) / (np.sum(mask_edges) + 1e-6)
|
| 398 |
+
|
| 399 |
+
# Edge smoothness: measure edge roughness
|
| 400 |
+
contours, _ = cv2.findContours(
|
| 401 |
+
mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
smoothness = 1.0
|
| 405 |
+
if len(contours) > 0:
|
| 406 |
+
# Approximate contours and measure approximation quality
|
| 407 |
+
for contour in contours:
|
| 408 |
+
perimeter = cv2.arcLength(contour, True)
|
| 409 |
+
if perimeter
|