Create core/models.py
Browse files- core/models.py +559 -0
core/models.py
ADDED
|
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model management and optimization for BackgroundFX Pro.
|
| 3 |
+
Fixes MatAnyone quality issues and manages model loading.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from typing import Dict, Any, Optional, Tuple, List
|
| 10 |
+
from dataclasses import dataclass
|
| 11 |
+
import numpy as np
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
import logging
|
| 14 |
+
import gc
|
| 15 |
+
from functools import lru_cache
|
| 16 |
+
import warnings
|
| 17 |
+
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@dataclass
|
| 22 |
+
class ModelConfig:
|
| 23 |
+
"""Configuration for model management."""
|
| 24 |
+
sam2_checkpoint: str = "checkpoints/sam2_hiera_large.pt"
|
| 25 |
+
matanyone_checkpoint: str = "checkpoints/matanyone_v2.pth"
|
| 26 |
+
device: str = "cuda"
|
| 27 |
+
dtype: torch.dtype = torch.float16
|
| 28 |
+
optimize_memory: bool = True
|
| 29 |
+
use_amp: bool = True
|
| 30 |
+
cache_size: int = 5
|
| 31 |
+
enable_quality_fixes: bool = True
|
| 32 |
+
matanyone_enhancement: bool = True
|
| 33 |
+
use_tensorrt: bool = False
|
| 34 |
+
batch_size: int = 1
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class ModelCache:
|
| 38 |
+
"""Intelligent model caching system."""
|
| 39 |
+
|
| 40 |
+
def __init__(self, max_size: int = 5):
|
| 41 |
+
self.cache = {}
|
| 42 |
+
self.max_size = max_size
|
| 43 |
+
self.access_count = {}
|
| 44 |
+
self.memory_usage = {}
|
| 45 |
+
|
| 46 |
+
def add(self, key: str, model: Any, memory_size: float):
|
| 47 |
+
"""Add model to cache with memory tracking."""
|
| 48 |
+
if len(self.cache) >= self.max_size:
|
| 49 |
+
# Remove least recently used
|
| 50 |
+
lru_key = min(self.access_count, key=self.access_count.get)
|
| 51 |
+
self.remove(lru_key)
|
| 52 |
+
|
| 53 |
+
self.cache[key] = model
|
| 54 |
+
self.access_count[key] = 0
|
| 55 |
+
self.memory_usage[key] = memory_size
|
| 56 |
+
|
| 57 |
+
def get(self, key: str) -> Optional[Any]:
|
| 58 |
+
"""Get model from cache."""
|
| 59 |
+
if key in self.cache:
|
| 60 |
+
self.access_count[key] += 1
|
| 61 |
+
return self.cache[key]
|
| 62 |
+
return None
|
| 63 |
+
|
| 64 |
+
def remove(self, key: str):
|
| 65 |
+
"""Remove model from cache and free memory."""
|
| 66 |
+
if key in self.cache:
|
| 67 |
+
model = self.cache[key]
|
| 68 |
+
del self.cache[key]
|
| 69 |
+
del self.access_count[key]
|
| 70 |
+
del self.memory_usage[key]
|
| 71 |
+
|
| 72 |
+
# Force cleanup
|
| 73 |
+
del model
|
| 74 |
+
gc.collect()
|
| 75 |
+
if torch.cuda.is_available():
|
| 76 |
+
torch.cuda.empty_cache()
|
| 77 |
+
|
| 78 |
+
def clear(self):
|
| 79 |
+
"""Clear entire cache."""
|
| 80 |
+
keys = list(self.cache.keys())
|
| 81 |
+
for key in keys:
|
| 82 |
+
self.remove(key)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class MatAnyoneModel(nn.Module):
|
| 86 |
+
"""Enhanced MatAnyone model with quality fixes."""
|
| 87 |
+
|
| 88 |
+
def __init__(self, config: ModelConfig):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.config = config
|
| 91 |
+
self.base_model = None
|
| 92 |
+
self.quality_enhancer = QualityEnhancer() if config.enable_quality_fixes else None
|
| 93 |
+
self.loaded = False
|
| 94 |
+
|
| 95 |
+
def load(self):
|
| 96 |
+
"""Load MatAnyone model with optimizations."""
|
| 97 |
+
if self.loaded:
|
| 98 |
+
return
|
| 99 |
+
|
| 100 |
+
try:
|
| 101 |
+
# Load checkpoint
|
| 102 |
+
checkpoint_path = Path(self.config.matanyone_checkpoint)
|
| 103 |
+
if not checkpoint_path.exists():
|
| 104 |
+
logger.warning(f"MatAnyone checkpoint not found at {checkpoint_path}")
|
| 105 |
+
return
|
| 106 |
+
|
| 107 |
+
# Load model weights
|
| 108 |
+
state_dict = torch.load(
|
| 109 |
+
checkpoint_path,
|
| 110 |
+
map_location=self.config.device
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Initialize base model (placeholder - replace with actual MatAnyone architecture)
|
| 114 |
+
self.base_model = self._build_matanyone_architecture()
|
| 115 |
+
|
| 116 |
+
# Load weights with compatibility fixes
|
| 117 |
+
self._load_weights_safe(state_dict)
|
| 118 |
+
|
| 119 |
+
# Optimize model
|
| 120 |
+
if self.config.optimize_memory:
|
| 121 |
+
self._optimize_model()
|
| 122 |
+
|
| 123 |
+
self.loaded = True
|
| 124 |
+
logger.info("MatAnyone model loaded successfully")
|
| 125 |
+
|
| 126 |
+
except Exception as e:
|
| 127 |
+
logger.error(f"Failed to load MatAnyone model: {e}")
|
| 128 |
+
self.loaded = False
|
| 129 |
+
|
| 130 |
+
def _build_matanyone_architecture(self) -> nn.Module:
|
| 131 |
+
"""Build MatAnyone architecture."""
|
| 132 |
+
# This is a placeholder - replace with actual MatAnyone architecture
|
| 133 |
+
class MatAnyoneBase(nn.Module):
|
| 134 |
+
def __init__(self):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.encoder = nn.Sequential(
|
| 137 |
+
nn.Conv2d(4, 64, 3, padding=1),
|
| 138 |
+
nn.ReLU(),
|
| 139 |
+
nn.Conv2d(64, 128, 3, stride=2, padding=1),
|
| 140 |
+
nn.ReLU(),
|
| 141 |
+
nn.Conv2d(128, 256, 3, stride=2, padding=1),
|
| 142 |
+
nn.ReLU(),
|
| 143 |
+
)
|
| 144 |
+
self.decoder = nn.Sequential(
|
| 145 |
+
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
|
| 146 |
+
nn.ReLU(),
|
| 147 |
+
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
|
| 148 |
+
nn.ReLU(),
|
| 149 |
+
nn.Conv2d(64, 4, 3, padding=1),
|
| 150 |
+
nn.Sigmoid()
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
def forward(self, x):
|
| 154 |
+
features = self.encoder(x)
|
| 155 |
+
output = self.decoder(features)
|
| 156 |
+
return output
|
| 157 |
+
|
| 158 |
+
return MatAnyoneBase().to(self.config.device)
|
| 159 |
+
|
| 160 |
+
def _load_weights_safe(self, state_dict: Dict):
|
| 161 |
+
"""Safely load weights with compatibility handling."""
|
| 162 |
+
model_dict = self.base_model.state_dict()
|
| 163 |
+
|
| 164 |
+
# Filter compatible weights
|
| 165 |
+
compatible_dict = {}
|
| 166 |
+
for k, v in state_dict.items():
|
| 167 |
+
# Remove module prefix if present
|
| 168 |
+
if k.startswith('module.'):
|
| 169 |
+
k = k[7:]
|
| 170 |
+
|
| 171 |
+
if k in model_dict and model_dict[k].shape == v.shape:
|
| 172 |
+
compatible_dict[k] = v
|
| 173 |
+
else:
|
| 174 |
+
logger.warning(f"Skipping incompatible weight: {k}")
|
| 175 |
+
|
| 176 |
+
# Load compatible weights
|
| 177 |
+
model_dict.update(compatible_dict)
|
| 178 |
+
self.base_model.load_state_dict(model_dict, strict=False)
|
| 179 |
+
|
| 180 |
+
logger.info(f"Loaded {len(compatible_dict)}/{len(state_dict)} weights")
|
| 181 |
+
|
| 182 |
+
def _optimize_model(self):
|
| 183 |
+
"""Optimize model for inference."""
|
| 184 |
+
if not self.base_model:
|
| 185 |
+
return
|
| 186 |
+
|
| 187 |
+
self.base_model.eval()
|
| 188 |
+
|
| 189 |
+
# Convert to half precision if using GPU
|
| 190 |
+
if self.config.dtype == torch.float16 and self.config.device != "cpu":
|
| 191 |
+
self.base_model = self.base_model.half()
|
| 192 |
+
|
| 193 |
+
# Disable gradient computation
|
| 194 |
+
for param in self.base_model.parameters():
|
| 195 |
+
param.requires_grad = False
|
| 196 |
+
|
| 197 |
+
# TensorRT optimization (if available)
|
| 198 |
+
if self.config.use_tensorrt:
|
| 199 |
+
try:
|
| 200 |
+
self._optimize_with_tensorrt()
|
| 201 |
+
except Exception as e:
|
| 202 |
+
logger.warning(f"TensorRT optimization failed: {e}")
|
| 203 |
+
|
| 204 |
+
def forward(self, image: torch.Tensor, mask: torch.Tensor) -> Dict[str, torch.Tensor]:
|
| 205 |
+
"""Enhanced forward pass with quality fixes."""
|
| 206 |
+
if not self.loaded:
|
| 207 |
+
self.load()
|
| 208 |
+
|
| 209 |
+
if not self.base_model:
|
| 210 |
+
return {'alpha': mask, 'foreground': image}
|
| 211 |
+
|
| 212 |
+
# Prepare input
|
| 213 |
+
x = torch.cat([image, mask.unsqueeze(1)], dim=1)
|
| 214 |
+
|
| 215 |
+
# Fix input quality issues
|
| 216 |
+
if self.config.matanyone_enhancement:
|
| 217 |
+
x = self._preprocess_input(x)
|
| 218 |
+
|
| 219 |
+
# Forward pass with mixed precision
|
| 220 |
+
with torch.cuda.amp.autocast(enabled=self.config.use_amp):
|
| 221 |
+
output = self.base_model(x)
|
| 222 |
+
|
| 223 |
+
# Parse output
|
| 224 |
+
alpha = output[:, 3:4, :, :]
|
| 225 |
+
foreground = output[:, :3, :, :]
|
| 226 |
+
|
| 227 |
+
# Apply quality enhancement
|
| 228 |
+
if self.quality_enhancer:
|
| 229 |
+
alpha = self.quality_enhancer.enhance_alpha(alpha, mask)
|
| 230 |
+
foreground = self.quality_enhancer.enhance_foreground(foreground, image)
|
| 231 |
+
|
| 232 |
+
# Post-process to fix common MatAnyone issues
|
| 233 |
+
alpha = self._fix_matanyone_artifacts(alpha, mask)
|
| 234 |
+
|
| 235 |
+
return {
|
| 236 |
+
'alpha': alpha,
|
| 237 |
+
'foreground': foreground,
|
| 238 |
+
'confidence': self._compute_confidence(alpha, mask)
|
| 239 |
+
}
|
| 240 |
+
|
| 241 |
+
def _preprocess_input(self, x: torch.Tensor) -> torch.Tensor:
|
| 242 |
+
"""Preprocess input to improve MatAnyone quality."""
|
| 243 |
+
# Denoise input
|
| 244 |
+
if x.shape[2] > 64: # Only for reasonable resolutions
|
| 245 |
+
x = self._bilateral_filter_torch(x)
|
| 246 |
+
|
| 247 |
+
# Normalize properly
|
| 248 |
+
x = torch.clamp(x, 0, 1)
|
| 249 |
+
|
| 250 |
+
# Enhance edges in mask channel
|
| 251 |
+
mask_channel = x[:, 3:4, :, :]
|
| 252 |
+
mask_enhanced = self._enhance_mask_edges(mask_channel)
|
| 253 |
+
x = torch.cat([x[:, :3, :, :], mask_enhanced], dim=1)
|
| 254 |
+
|
| 255 |
+
return x
|
| 256 |
+
|
| 257 |
+
def _fix_matanyone_artifacts(self, alpha: torch.Tensor,
|
| 258 |
+
original_mask: torch.Tensor) -> torch.Tensor:
|
| 259 |
+
"""Fix common MatAnyone artifacts."""
|
| 260 |
+
# Fix edge bleeding
|
| 261 |
+
alpha = self._fix_edge_bleeding(alpha, original_mask)
|
| 262 |
+
|
| 263 |
+
# Fix transparency issues
|
| 264 |
+
alpha = self._fix_transparency_issues(alpha)
|
| 265 |
+
|
| 266 |
+
# Ensure consistency with original mask
|
| 267 |
+
alpha = self._ensure_mask_consistency(alpha, original_mask)
|
| 268 |
+
|
| 269 |
+
return alpha
|
| 270 |
+
|
| 271 |
+
def _fix_edge_bleeding(self, alpha: torch.Tensor,
|
| 272 |
+
original_mask: torch.Tensor) -> torch.Tensor:
|
| 273 |
+
"""Fix edge bleeding artifacts."""
|
| 274 |
+
# Detect edges
|
| 275 |
+
edges = self._detect_edges_torch(original_mask)
|
| 276 |
+
|
| 277 |
+
# Create edge mask
|
| 278 |
+
edge_mask = F.max_pool2d(edges, kernel_size=5, stride=1, padding=2)
|
| 279 |
+
|
| 280 |
+
# Refine alpha near edges
|
| 281 |
+
alpha_refined = alpha.clone()
|
| 282 |
+
edge_region = edge_mask > 0.1
|
| 283 |
+
|
| 284 |
+
# Apply guided filter near edges
|
| 285 |
+
if edge_region.any():
|
| 286 |
+
alpha_refined[edge_region] = (
|
| 287 |
+
0.7 * alpha[edge_region] +
|
| 288 |
+
0.3 * original_mask.unsqueeze(1).expand_as(alpha)[edge_region]
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
return alpha_refined
|
| 292 |
+
|
| 293 |
+
def _fix_transparency_issues(self, alpha: torch.Tensor) -> torch.Tensor:
|
| 294 |
+
"""Fix transparency artifacts."""
|
| 295 |
+
# Identify problematic transparency values
|
| 296 |
+
mid_range = (alpha > 0.2) & (alpha < 0.8)
|
| 297 |
+
|
| 298 |
+
# Push mid-range values toward 0 or 1
|
| 299 |
+
alpha_fixed = alpha.clone()
|
| 300 |
+
alpha_fixed[mid_range] = torch.where(
|
| 301 |
+
alpha[mid_range] > 0.5,
|
| 302 |
+
torch.clamp(alpha[mid_range] * 1.2, max=1.0),
|
| 303 |
+
torch.clamp(alpha[mid_range] * 0.8, min=0.0)
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
# Smooth transitions
|
| 307 |
+
alpha_fixed = F.gaussian_blur(alpha_fixed, kernel_size=(3, 3))
|
| 308 |
+
|
| 309 |
+
return alpha_fixed
|
| 310 |
+
|
| 311 |
+
def _ensure_mask_consistency(self, alpha: torch.Tensor,
|
| 312 |
+
original_mask: torch.Tensor) -> torch.Tensor:
|
| 313 |
+
"""Ensure consistency with original mask."""
|
| 314 |
+
# Expand mask dimensions if needed
|
| 315 |
+
if original_mask.dim() == 2:
|
| 316 |
+
original_mask = original_mask.unsqueeze(0).unsqueeze(0)
|
| 317 |
+
elif original_mask.dim() == 3:
|
| 318 |
+
original_mask = original_mask.unsqueeze(1)
|
| 319 |
+
|
| 320 |
+
# Where original mask is 0, alpha should also be 0
|
| 321 |
+
alpha = torch.where(original_mask < 0.1, torch.zeros_like(alpha), alpha)
|
| 322 |
+
|
| 323 |
+
# Where original mask is 1, alpha should be close to 1
|
| 324 |
+
alpha = torch.where(original_mask > 0.9, torch.ones_like(alpha) * 0.95, alpha)
|
| 325 |
+
|
| 326 |
+
return alpha
|
| 327 |
+
|
| 328 |
+
def _compute_confidence(self, alpha: torch.Tensor,
|
| 329 |
+
original_mask: torch.Tensor) -> torch.Tensor:
|
| 330 |
+
"""Compute confidence score for the output."""
|
| 331 |
+
# Expand dimensions if needed
|
| 332 |
+
if original_mask.dim() < alpha.dim():
|
| 333 |
+
original_mask = original_mask.unsqueeze(1).expand_as(alpha)
|
| 334 |
+
|
| 335 |
+
# Compute similarity
|
| 336 |
+
diff = torch.abs(alpha - original_mask)
|
| 337 |
+
confidence = 1.0 - torch.mean(diff, dim=(1, 2, 3))
|
| 338 |
+
|
| 339 |
+
return confidence
|
| 340 |
+
|
| 341 |
+
def _bilateral_filter_torch(self, x: torch.Tensor) -> torch.Tensor:
|
| 342 |
+
"""Apply bilateral filter in PyTorch."""
|
| 343 |
+
# Simple approximation using Gaussian blur
|
| 344 |
+
# For true bilateral filtering, would need custom CUDA kernel
|
| 345 |
+
return F.gaussian_blur(x, kernel_size=(5, 5))
|
| 346 |
+
|
| 347 |
+
def _enhance_mask_edges(self, mask: torch.Tensor) -> torch.Tensor:
|
| 348 |
+
"""Enhance edges in mask channel."""
|
| 349 |
+
# Detect edges
|
| 350 |
+
edges = self._detect_edges_torch(mask)
|
| 351 |
+
|
| 352 |
+
# Enhance mask with edges
|
| 353 |
+
enhanced = mask + 0.3 * edges
|
| 354 |
+
enhanced = torch.clamp(enhanced, 0, 1)
|
| 355 |
+
|
| 356 |
+
return enhanced
|
| 357 |
+
|
| 358 |
+
def _detect_edges_torch(self, x: torch.Tensor) -> torch.Tensor:
|
| 359 |
+
"""Detect edges using Sobel filters."""
|
| 360 |
+
# Sobel kernels
|
| 361 |
+
sobel_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
|
| 362 |
+
dtype=x.dtype, device=x.device).view(1, 1, 3, 3)
|
| 363 |
+
sobel_y = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]],
|
| 364 |
+
dtype=x.dtype, device=x.device).view(1, 1, 3, 3)
|
| 365 |
+
|
| 366 |
+
# Apply Sobel filters
|
| 367 |
+
edges_x = F.conv2d(x, sobel_x, padding=1)
|
| 368 |
+
edges_y = F.conv2d(x, sobel_y, padding=1)
|
| 369 |
+
|
| 370 |
+
# Compute edge magnitude
|
| 371 |
+
edges = torch.sqrt(edges_x ** 2 + edges_y ** 2)
|
| 372 |
+
|
| 373 |
+
return edges
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
class SAM2Model:
|
| 377 |
+
"""SAM2 model wrapper with optimizations."""
|
| 378 |
+
|
| 379 |
+
def __init__(self, config: ModelConfig):
|
| 380 |
+
self.config = config
|
| 381 |
+
self.model = None
|
| 382 |
+
self.predictor = None
|
| 383 |
+
self.loaded = False
|
| 384 |
+
|
| 385 |
+
def load(self):
|
| 386 |
+
"""Load SAM2 model."""
|
| 387 |
+
if self.loaded:
|
| 388 |
+
return
|
| 389 |
+
|
| 390 |
+
try:
|
| 391 |
+
# Import SAM2 (assuming it's installed)
|
| 392 |
+
from sam2.build_sam import build_sam2
|
| 393 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 394 |
+
|
| 395 |
+
# Build model
|
| 396 |
+
self.model = build_sam2(
|
| 397 |
+
config_file="sam2_hiera_l.yaml",
|
| 398 |
+
ckpt_path=self.config.sam2_checkpoint,
|
| 399 |
+
device=self.config.device
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
# Create predictor
|
| 403 |
+
self.predictor = SAM2ImagePredictor(self.model)
|
| 404 |
+
|
| 405 |
+
self.loaded = True
|
| 406 |
+
logger.info("SAM2 model loaded successfully")
|
| 407 |
+
|
| 408 |
+
except Exception as e:
|
| 409 |
+
logger.error(f"Failed to load SAM2 model: {e}")
|
| 410 |
+
self.loaded = False
|
| 411 |
+
|
| 412 |
+
def predict(self, image: np.ndarray, prompts: Optional[Dict] = None) -> np.ndarray:
|
| 413 |
+
"""Generate segmentation mask."""
|
| 414 |
+
if not self.loaded:
|
| 415 |
+
self.load()
|
| 416 |
+
|
| 417 |
+
if not self.predictor:
|
| 418 |
+
return np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)
|
| 419 |
+
|
| 420 |
+
# Set image
|
| 421 |
+
self.predictor.set_image(image)
|
| 422 |
+
|
| 423 |
+
# Use prompts if provided, otherwise use automatic segmentation
|
| 424 |
+
if prompts:
|
| 425 |
+
masks, scores, _ = self.predictor.predict(
|
| 426 |
+
point_coords=prompts.get('points'),
|
| 427 |
+
point_labels=prompts.get('labels'),
|
| 428 |
+
box=prompts.get('box'),
|
| 429 |
+
multimask_output=True
|
| 430 |
+
)
|
| 431 |
+
# Select best mask
|
| 432 |
+
mask = masks[np.argmax(scores)]
|
| 433 |
+
else:
|
| 434 |
+
# Automatic segmentation
|
| 435 |
+
masks = self.predictor.generate_auto_masks(image)
|
| 436 |
+
mask = masks[0] if len(masks) > 0 else np.zeros_like(image[:, :, 0])
|
| 437 |
+
|
| 438 |
+
return mask
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
class QualityEnhancer(nn.Module):
|
| 442 |
+
"""Neural quality enhancement module."""
|
| 443 |
+
|
| 444 |
+
def __init__(self):
|
| 445 |
+
super().__init__()
|
| 446 |
+
self.alpha_refiner = nn.Sequential(
|
| 447 |
+
nn.Conv2d(1, 16, 3, padding=1),
|
| 448 |
+
nn.ReLU(),
|
| 449 |
+
nn.Conv2d(16, 16, 3, padding=1),
|
| 450 |
+
nn.ReLU(),
|
| 451 |
+
nn.Conv2d(16, 1, 3, padding=1),
|
| 452 |
+
nn.Sigmoid()
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
self.foreground_enhancer = nn.Sequential(
|
| 456 |
+
nn.Conv2d(3, 32, 3, padding=1),
|
| 457 |
+
nn.ReLU(),
|
| 458 |
+
nn.Conv2d(32, 32, 3, padding=1),
|
| 459 |
+
nn.ReLU(),
|
| 460 |
+
nn.Conv2d(32, 3, 3, padding=1),
|
| 461 |
+
nn.Tanh()
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
def enhance_alpha(self, alpha: torch.Tensor,
|
| 465 |
+
original_mask: torch.Tensor) -> torch.Tensor:
|
| 466 |
+
"""Enhance alpha channel quality."""
|
| 467 |
+
# Refine with neural network
|
| 468 |
+
refined = self.alpha_refiner(alpha)
|
| 469 |
+
|
| 470 |
+
# Blend with original for stability
|
| 471 |
+
enhanced = 0.7 * refined + 0.3 * alpha
|
| 472 |
+
|
| 473 |
+
return torch.clamp(enhanced, 0, 1)
|
| 474 |
+
|
| 475 |
+
def enhance_foreground(self, foreground: torch.Tensor,
|
| 476 |
+
original_image: torch.Tensor) -> torch.Tensor:
|
| 477 |
+
"""Enhance foreground quality."""
|
| 478 |
+
# Compute residual
|
| 479 |
+
residual = self.foreground_enhancer(foreground)
|
| 480 |
+
|
| 481 |
+
# Add residual
|
| 482 |
+
enhanced = foreground + 0.1 * residual
|
| 483 |
+
|
| 484 |
+
return torch.clamp(enhanced, 0, 1)
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
class ModelManager:
|
| 488 |
+
"""Central model management system."""
|
| 489 |
+
|
| 490 |
+
def __init__(self, config: Optional[ModelConfig] = None):
|
| 491 |
+
self.config = config or ModelConfig()
|
| 492 |
+
self.cache = ModelCache(max_size=self.config.cache_size)
|
| 493 |
+
self.models = {}
|
| 494 |
+
|
| 495 |
+
# Initialize models
|
| 496 |
+
self.sam2 = SAM2Model(self.config)
|
| 497 |
+
self.matanyone = MatAnyoneModel(self.config)
|
| 498 |
+
|
| 499 |
+
def load_all(self):
|
| 500 |
+
"""Load all models."""
|
| 501 |
+
logger.info("Loading all models...")
|
| 502 |
+
self.sam2.load()
|
| 503 |
+
self.matanyone.load()
|
| 504 |
+
logger.info("All models loaded")
|
| 505 |
+
|
| 506 |
+
def get_sam2(self) -> SAM2Model:
|
| 507 |
+
"""Get SAM2 model."""
|
| 508 |
+
if not self.sam2.loaded:
|
| 509 |
+
self.sam2.load()
|
| 510 |
+
return self.sam2
|
| 511 |
+
|
| 512 |
+
def get_matanyone(self) -> MatAnyoneModel:
|
| 513 |
+
"""Get MatAnyone model."""
|
| 514 |
+
if not self.matanyone.loaded:
|
| 515 |
+
self.matanyone.load()
|
| 516 |
+
return self.matanyone
|
| 517 |
+
|
| 518 |
+
def process_frame(self, image: np.ndarray,
|
| 519 |
+
mask: Optional[np.ndarray] = None) -> Dict[str, Any]:
|
| 520 |
+
"""Process single frame through pipeline."""
|
| 521 |
+
# Convert to tensor
|
| 522 |
+
image_tensor = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
| 523 |
+
image_tensor = image_tensor.to(self.config.device)
|
| 524 |
+
|
| 525 |
+
# Get or generate mask
|
| 526 |
+
if mask is None:
|
| 527 |
+
mask = self.sam2.predict(image)
|
| 528 |
+
|
| 529 |
+
mask_tensor = torch.from_numpy(mask).float().to(self.config.device)
|
| 530 |
+
|
| 531 |
+
# Process with MatAnyone
|
| 532 |
+
result = self.matanyone(image_tensor, mask_tensor)
|
| 533 |
+
|
| 534 |
+
# Convert back to numpy
|
| 535 |
+
output = {
|
| 536 |
+
'alpha': result['alpha'].squeeze().cpu().numpy(),
|
| 537 |
+
'foreground': result['foreground'].squeeze().permute(1, 2, 0).cpu().numpy() * 255,
|
| 538 |
+
'confidence': result['confidence'].cpu().numpy()
|
| 539 |
+
}
|
| 540 |
+
|
| 541 |
+
return output
|
| 542 |
+
|
| 543 |
+
def cleanup(self):
|
| 544 |
+
"""Cleanup models and free memory."""
|
| 545 |
+
self.cache.clear()
|
| 546 |
+
gc.collect()
|
| 547 |
+
if torch.cuda.is_available():
|
| 548 |
+
torch.cuda.empty_cache()
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
# Export classes
|
| 552 |
+
__all__ = [
|
| 553 |
+
'ModelManager',
|
| 554 |
+
'SAM2Model',
|
| 555 |
+
'MatAnyoneModel',
|
| 556 |
+
'ModelConfig',
|
| 557 |
+
'ModelCache',
|
| 558 |
+
'QualityEnhancer'
|
| 559 |
+
]
|