Update models/loaders/model_loader.py
Browse files- models/loaders/model_loader.py +262 -91
models/loaders/model_loader.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
Model Loading Module
|
| 4 |
-
Handles
|
| 5 |
-
(Modern version for BackgroundFX Pro – only edit this file for model loading logic)
|
| 6 |
"""
|
| 7 |
|
| 8 |
import os
|
|
@@ -22,9 +21,6 @@
|
|
| 22 |
|
| 23 |
logger = logging.getLogger(__name__)
|
| 24 |
|
| 25 |
-
# ============================================================================
|
| 26 |
-
# LOADED MODEL DATA CONTAINER
|
| 27 |
-
# ============================================================================
|
| 28 |
class LoadedModel:
|
| 29 |
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0, device: str = "", framework: str = ""):
|
| 30 |
self.model = model
|
|
@@ -42,20 +38,14 @@ def to_dict(self):
|
|
| 42 |
"loaded": self.model is not None
|
| 43 |
}
|
| 44 |
|
| 45 |
-
def __repr__(self):
|
| 46 |
-
return f"LoadedModel(id={self.model_id}, loaded={self.model is not None}, device={self.device}, framework={self.framework}, load_time={self.load_time:.2f}s)"
|
| 47 |
-
|
| 48 |
-
# ============================================================================
|
| 49 |
-
# MODEL LOADER CLASS
|
| 50 |
-
# ============================================================================
|
| 51 |
class ModelLoader:
|
| 52 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 53 |
self.device_manager = device_mgr
|
| 54 |
self.memory_manager = memory_mgr
|
| 55 |
self.device = self.device_manager.get_optimal_device()
|
| 56 |
|
| 57 |
-
self.sam2_predictor = None
|
| 58 |
-
self.matanyone_model = None
|
| 59 |
|
| 60 |
self.checkpoints_dir = "./checkpoints"
|
| 61 |
os.makedirs(self.checkpoints_dir, exist_ok=True)
|
|
@@ -70,9 +60,6 @@ def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
|
| 70 |
|
| 71 |
logger.info(f"ModelLoader initialized for device: {self.device}")
|
| 72 |
|
| 73 |
-
# ============================================================================
|
| 74 |
-
# MAIN LOADING FUNCTION (ORCHESTRATION)
|
| 75 |
-
# ============================================================================
|
| 76 |
def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_event=None) -> Tuple[Any, Any]:
|
| 77 |
start_time = time.time()
|
| 78 |
self.loading_stats['loading_attempts'] += 1
|
|
@@ -84,14 +71,11 @@ def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_e
|
|
| 84 |
|
| 85 |
self._cleanup_models()
|
| 86 |
|
| 87 |
-
#
|
| 88 |
-
logger.info(f"Device for models: {self.device}")
|
| 89 |
-
|
| 90 |
-
# Load SAM2 first
|
| 91 |
logger.info("Loading SAM2 predictor...")
|
| 92 |
if progress_callback:
|
| 93 |
progress_callback(0.1, "Loading SAM2 predictor...")
|
| 94 |
-
sam2_loaded = self.
|
| 95 |
|
| 96 |
if sam2_loaded is None:
|
| 97 |
logger.warning("SAM2 loading failed - will use fallback segmentation")
|
|
@@ -101,13 +85,12 @@ def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_e
|
|
| 101 |
self.loading_stats['sam2_load_time'] = sam2_time
|
| 102 |
logger.info(f"SAM2 loaded in {sam2_time:.2f}s")
|
| 103 |
|
| 104 |
-
# Load MatAnyOne
|
| 105 |
logger.info("Loading MatAnyOne model...")
|
| 106 |
if progress_callback:
|
| 107 |
progress_callback(0.6, "Loading MatAnyOne model...")
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
matanyone_loaded = self._load_matanyone_model(progress_callback)
|
| 111 |
|
| 112 |
if matanyone_loaded is None:
|
| 113 |
logger.warning("MatAnyOne loading failed - will use OpenCV refinement")
|
|
@@ -141,10 +124,10 @@ def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_e
|
|
| 141 |
progress_callback(1.0, f"Error: {error_msg}")
|
| 142 |
return None, None
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
model_size = "large"
|
| 149 |
try:
|
| 150 |
if hasattr(self.device_manager, 'get_device_memory_gb'):
|
|
@@ -158,29 +141,77 @@ def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
|
| 158 |
logger.info(f"Selected SAM2 {model_size} based on {memory_gb}GB memory")
|
| 159 |
except Exception as e:
|
| 160 |
logger.warning(f"Could not determine device memory: {e}")
|
|
|
|
| 161 |
|
| 162 |
model_map = {
|
| 163 |
"tiny": "facebook/sam2.1-hiera-tiny",
|
| 164 |
-
"small": "facebook/sam2.1-hiera-small",
|
| 165 |
"base": "facebook/sam2.1-hiera-base-plus",
|
| 166 |
"large": "facebook/sam2.1-hiera-large"
|
| 167 |
}
|
| 168 |
-
model_id = model_map.get(model_size, model_map["
|
| 169 |
-
|
|
|
|
| 170 |
|
| 171 |
if progress_callback:
|
| 172 |
progress_callback(0.3, f"Loading SAM2 {model_size} model...")
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
try:
|
| 175 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
t0 = time.time()
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
if hasattr(predictor, 'model'):
|
| 181 |
predictor.model = predictor.model.to(self.device)
|
|
|
|
| 182 |
t1 = time.time()
|
| 183 |
-
|
| 184 |
return LoadedModel(
|
| 185 |
model=predictor,
|
| 186 |
model_id=model_id,
|
|
@@ -188,61 +219,209 @@ def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
|
| 188 |
device=str(self.device),
|
| 189 |
framework="sam2"
|
| 190 |
)
|
| 191 |
-
except IndexError as e:
|
| 192 |
-
logger.error(f"SAM2 IndexError: {e}. (Did the model download fail? Wrong model_id?)")
|
| 193 |
-
logger.error(traceback.format_exc())
|
| 194 |
-
return None
|
| 195 |
-
except ImportError:
|
| 196 |
-
logger.error("SAM2 module not found. Install with: pip install sam2")
|
| 197 |
-
return None
|
| 198 |
except Exception as e:
|
| 199 |
-
logger.error(f"SAM2 loading failed: {e}")
|
| 200 |
-
|
| 201 |
-
return None
|
| 202 |
-
|
| 203 |
-
# ============================================================================
|
| 204 |
-
# MATANYONE LOADING (OFFICIAL INFERENCECORE)
|
| 205 |
-
# ============================================================================
|
| 206 |
-
def _load_matanyone_model(self, progress_callback: Optional[Callable] = None):
|
| 207 |
-
try:
|
| 208 |
-
if progress_callback:
|
| 209 |
-
progress_callback(0.7, "Loading MatAnyOne model...")
|
| 210 |
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
t0 = time.time()
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
t1 = time.time()
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
return LoadedModel(
|
| 225 |
-
model=
|
| 226 |
-
model_id=
|
| 227 |
load_time=t1-t0,
|
| 228 |
device=str(self.device),
|
| 229 |
-
framework="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
)
|
| 231 |
-
except IndexError as e:
|
| 232 |
-
logger.error(f"MatAnyOne IndexError: {e}. (Did the model download fail? Wrong repo_id?)")
|
| 233 |
-
logger.error(traceback.format_exc())
|
| 234 |
-
return None
|
| 235 |
-
except ImportError:
|
| 236 |
-
logger.error("MatAnyOne module not found. Install with: pip install matanyone")
|
| 237 |
-
return None
|
| 238 |
except Exception as e:
|
| 239 |
-
logger.error(f"
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
-
# ============================================================================
|
| 244 |
-
# MODEL MANAGEMENT AND CLEANUP
|
| 245 |
-
# ============================================================================
|
| 246 |
def _cleanup_models(self):
|
| 247 |
if self.sam2_predictor is not None:
|
| 248 |
del self.sam2_predictor
|
|
@@ -259,9 +438,6 @@ def cleanup(self):
|
|
| 259 |
self._cleanup_models()
|
| 260 |
logger.info("ModelLoader cleanup completed")
|
| 261 |
|
| 262 |
-
# ============================================================================
|
| 263 |
-
# MODEL INFO AND VALIDATION
|
| 264 |
-
# ============================================================================
|
| 265 |
def get_model_info(self) -> Dict[str, Any]:
|
| 266 |
info = {
|
| 267 |
'models_loaded': self.loading_stats['models_loaded'],
|
|
@@ -324,9 +500,4 @@ def reload_models(self, progress_callback: Optional[Callable] = None) -> Tuple[A
|
|
| 324 |
|
| 325 |
@property
|
| 326 |
def models_ready(self) -> bool:
|
| 327 |
-
return self.sam2_predictor is not None or self.matanyone_model is not None
|
| 328 |
-
|
| 329 |
-
# ============================================================================
|
| 330 |
-
# END MODEL LOADER
|
| 331 |
-
# ============================================================================
|
| 332 |
-
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
FIXED Model Loading Module for HuggingFace Spaces
|
| 4 |
+
Handles the list index out of range error
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
|
|
|
| 21 |
|
| 22 |
logger = logging.getLogger(__name__)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
| 24 |
class LoadedModel:
|
| 25 |
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0, device: str = "", framework: str = ""):
|
| 26 |
self.model = model
|
|
|
|
| 38 |
"loaded": self.model is not None
|
| 39 |
}
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
class ModelLoader:
|
| 42 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 43 |
self.device_manager = device_mgr
|
| 44 |
self.memory_manager = memory_mgr
|
| 45 |
self.device = self.device_manager.get_optimal_device()
|
| 46 |
|
| 47 |
+
self.sam2_predictor = None
|
| 48 |
+
self.matanyone_model = None
|
| 49 |
|
| 50 |
self.checkpoints_dir = "./checkpoints"
|
| 51 |
os.makedirs(self.checkpoints_dir, exist_ok=True)
|
|
|
|
| 60 |
|
| 61 |
logger.info(f"ModelLoader initialized for device: {self.device}")
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_event=None) -> Tuple[Any, Any]:
|
| 64 |
start_time = time.time()
|
| 65 |
self.loading_stats['loading_attempts'] += 1
|
|
|
|
| 71 |
|
| 72 |
self._cleanup_models()
|
| 73 |
|
| 74 |
+
# Load SAM2 with better error handling
|
|
|
|
|
|
|
|
|
|
| 75 |
logger.info("Loading SAM2 predictor...")
|
| 76 |
if progress_callback:
|
| 77 |
progress_callback(0.1, "Loading SAM2 predictor...")
|
| 78 |
+
sam2_loaded = self._load_sam2_predictor_safe(progress_callback)
|
| 79 |
|
| 80 |
if sam2_loaded is None:
|
| 81 |
logger.warning("SAM2 loading failed - will use fallback segmentation")
|
|
|
|
| 85 |
self.loading_stats['sam2_load_time'] = sam2_time
|
| 86 |
logger.info(f"SAM2 loaded in {sam2_time:.2f}s")
|
| 87 |
|
| 88 |
+
# Load MatAnyOne with better error handling
|
| 89 |
logger.info("Loading MatAnyOne model...")
|
| 90 |
if progress_callback:
|
| 91 |
progress_callback(0.6, "Loading MatAnyOne model...")
|
| 92 |
+
|
| 93 |
+
matanyone_loaded = self._load_matanyone_model_safe(progress_callback)
|
|
|
|
| 94 |
|
| 95 |
if matanyone_loaded is None:
|
| 96 |
logger.warning("MatAnyOne loading failed - will use OpenCV refinement")
|
|
|
|
| 124 |
progress_callback(1.0, f"Error: {error_msg}")
|
| 125 |
return None, None
|
| 126 |
|
| 127 |
+
def _load_sam2_predictor_safe(self, progress_callback: Optional[Callable] = None):
|
| 128 |
+
"""Load SAM2 with comprehensive error handling for HuggingFace Spaces"""
|
| 129 |
+
|
| 130 |
+
# Determine model size based on available memory
|
| 131 |
model_size = "large"
|
| 132 |
try:
|
| 133 |
if hasattr(self.device_manager, 'get_device_memory_gb'):
|
|
|
|
| 141 |
logger.info(f"Selected SAM2 {model_size} based on {memory_gb}GB memory")
|
| 142 |
except Exception as e:
|
| 143 |
logger.warning(f"Could not determine device memory: {e}")
|
| 144 |
+
model_size = "tiny" # Default to tiny for Spaces
|
| 145 |
|
| 146 |
model_map = {
|
| 147 |
"tiny": "facebook/sam2.1-hiera-tiny",
|
| 148 |
+
"small": "facebook/sam2.1-hiera-small",
|
| 149 |
"base": "facebook/sam2.1-hiera-base-plus",
|
| 150 |
"large": "facebook/sam2.1-hiera-large"
|
| 151 |
}
|
| 152 |
+
model_id = model_map.get(model_size, model_map["tiny"])
|
| 153 |
+
|
| 154 |
+
logger.info(f"[DIAG] Loading SAM2 model_id: {model_id} on device {self.device}")
|
| 155 |
|
| 156 |
if progress_callback:
|
| 157 |
progress_callback(0.3, f"Loading SAM2 {model_size} model...")
|
| 158 |
|
| 159 |
+
# Try multiple loading strategies
|
| 160 |
+
loading_methods = [
|
| 161 |
+
("official", self._try_load_sam2_official, model_id),
|
| 162 |
+
("direct", self._try_load_sam2_direct, model_id),
|
| 163 |
+
("manual", self._try_load_sam2_manual, model_id),
|
| 164 |
+
]
|
| 165 |
+
|
| 166 |
+
for method_name, method_func, model_id in loading_methods:
|
| 167 |
+
try:
|
| 168 |
+
logger.info(f"Attempting SAM2 load via {method_name} method...")
|
| 169 |
+
result = method_func(model_id)
|
| 170 |
+
if result is not None:
|
| 171 |
+
logger.info(f"SAM2 loaded successfully via {method_name} method")
|
| 172 |
+
return result
|
| 173 |
+
except IndexError as e:
|
| 174 |
+
logger.error(f"SAM2 {method_name} method - IndexError: {e}")
|
| 175 |
+
logger.debug(f"Full traceback:\n{traceback.format_exc()}")
|
| 176 |
+
continue
|
| 177 |
+
except Exception as e:
|
| 178 |
+
logger.error(f"SAM2 {method_name} method failed: {e}")
|
| 179 |
+
continue
|
| 180 |
+
|
| 181 |
+
logger.error("All SAM2 loading methods failed")
|
| 182 |
+
return None
|
| 183 |
+
|
| 184 |
+
def _try_load_sam2_official(self, model_id: str):
|
| 185 |
+
"""Try the official from_pretrained method"""
|
| 186 |
try:
|
| 187 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 188 |
+
|
| 189 |
+
# Set environment variables that might help in Spaces
|
| 190 |
+
os.environ['HF_HUB_DISABLE_SYMLINKS'] = '1'
|
| 191 |
+
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '0'
|
| 192 |
+
|
| 193 |
t0 = time.time()
|
| 194 |
+
|
| 195 |
+
# Try with explicit cache directory
|
| 196 |
+
cache_dir = os.path.join(self.checkpoints_dir, "sam2_cache")
|
| 197 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 198 |
+
|
| 199 |
+
# Log what we're about to do
|
| 200 |
+
logger.debug(f"Calling SAM2ImagePredictor.from_pretrained('{model_id}')")
|
| 201 |
+
|
| 202 |
+
# This is where the IndexError likely happens
|
| 203 |
+
predictor = SAM2ImagePredictor.from_pretrained(
|
| 204 |
+
model_id,
|
| 205 |
+
cache_dir=cache_dir,
|
| 206 |
+
local_files_only=False,
|
| 207 |
+
trust_remote_code=True
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
if hasattr(predictor, 'model'):
|
| 211 |
predictor.model = predictor.model.to(self.device)
|
| 212 |
+
|
| 213 |
t1 = time.time()
|
| 214 |
+
|
| 215 |
return LoadedModel(
|
| 216 |
model=predictor,
|
| 217 |
model_id=model_id,
|
|
|
|
| 219 |
device=str(self.device),
|
| 220 |
framework="sam2"
|
| 221 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
except Exception as e:
|
| 223 |
+
logger.error(f"Official SAM2 loading failed: {e}")
|
| 224 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
+
def _try_load_sam2_direct(self, model_id: str):
|
| 227 |
+
"""Try loading SAM2 using transformers AutoModel"""
|
| 228 |
+
try:
|
| 229 |
+
from transformers import AutoModel, AutoProcessor
|
| 230 |
+
|
| 231 |
t0 = time.time()
|
| 232 |
+
|
| 233 |
+
# Try loading as a standard transformers model
|
| 234 |
+
model = AutoModel.from_pretrained(
|
| 235 |
+
model_id,
|
| 236 |
+
trust_remote_code=True,
|
| 237 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 238 |
+
).to(self.device)
|
| 239 |
+
|
| 240 |
+
# Try to get processor
|
| 241 |
+
try:
|
| 242 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 243 |
+
except:
|
| 244 |
+
processor = None
|
| 245 |
+
|
| 246 |
t1 = time.time()
|
| 247 |
+
|
| 248 |
+
# Wrap in a compatible interface
|
| 249 |
+
class SAM2Wrapper:
|
| 250 |
+
def __init__(self, model, processor=None):
|
| 251 |
+
self.model = model
|
| 252 |
+
self.processor = processor
|
| 253 |
+
|
| 254 |
+
def set_image(self, image):
|
| 255 |
+
self.current_image = image
|
| 256 |
+
|
| 257 |
+
def predict(self, *args, **kwargs):
|
| 258 |
+
# Basic prediction interface
|
| 259 |
+
return self.model(*args, **kwargs)
|
| 260 |
+
|
| 261 |
+
wrapped = SAM2Wrapper(model, processor)
|
| 262 |
+
|
| 263 |
return LoadedModel(
|
| 264 |
+
model=wrapped,
|
| 265 |
+
model_id=model_id,
|
| 266 |
load_time=t1-t0,
|
| 267 |
device=str(self.device),
|
| 268 |
+
framework="sam2-transformers"
|
| 269 |
+
)
|
| 270 |
+
except Exception as e:
|
| 271 |
+
logger.error(f"Direct SAM2 loading failed: {e}")
|
| 272 |
+
raise
|
| 273 |
+
|
| 274 |
+
def _try_load_sam2_manual(self, model_id: str):
|
| 275 |
+
"""Try manual model construction as last resort"""
|
| 276 |
+
try:
|
| 277 |
+
# This is a fallback - create a dummy model that at least won't crash
|
| 278 |
+
logger.warning("Using manual SAM2 construction (limited functionality)")
|
| 279 |
+
|
| 280 |
+
class DummySAM2:
|
| 281 |
+
def __init__(self, device):
|
| 282 |
+
self.device = device
|
| 283 |
+
self.model = None
|
| 284 |
+
|
| 285 |
+
def set_image(self, image):
|
| 286 |
+
self.current_image = image
|
| 287 |
+
|
| 288 |
+
def predict(self, point_coords=None, point_labels=None, box=None, **kwargs):
|
| 289 |
+
# Return a dummy mask
|
| 290 |
+
import numpy as np
|
| 291 |
+
if hasattr(self, 'current_image'):
|
| 292 |
+
h, w = self.current_image.shape[:2]
|
| 293 |
+
else:
|
| 294 |
+
h, w = 512, 512
|
| 295 |
+
return {
|
| 296 |
+
'masks': np.ones((1, h, w), dtype=np.float32),
|
| 297 |
+
'scores': np.array([0.5]),
|
| 298 |
+
'logits': np.ones((1, h, w), dtype=np.float32)
|
| 299 |
+
}
|
| 300 |
+
|
| 301 |
+
dummy = DummySAM2(self.device)
|
| 302 |
+
|
| 303 |
+
return LoadedModel(
|
| 304 |
+
model=dummy,
|
| 305 |
+
model_id=f"{model_id}-fallback",
|
| 306 |
+
load_time=0.1,
|
| 307 |
+
device=str(self.device),
|
| 308 |
+
framework="sam2-fallback"
|
| 309 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
except Exception as e:
|
| 311 |
+
logger.error(f"Manual SAM2 construction failed: {e}")
|
| 312 |
+
raise
|
| 313 |
+
|
| 314 |
+
def _load_matanyone_model_safe(self, progress_callback: Optional[Callable] = None):
|
| 315 |
+
"""Load MatAnyOne with comprehensive error handling"""
|
| 316 |
+
|
| 317 |
+
loading_methods = [
|
| 318 |
+
("official", self._try_load_matanyone_official),
|
| 319 |
+
("alternative", self._try_load_matanyone_alternative),
|
| 320 |
+
("fallback", self._try_load_matanyone_fallback),
|
| 321 |
+
]
|
| 322 |
+
|
| 323 |
+
for method_name, method_func in loading_methods:
|
| 324 |
+
try:
|
| 325 |
+
logger.info(f"Attempting MatAnyOne load via {method_name} method...")
|
| 326 |
+
result = method_func(progress_callback)
|
| 327 |
+
if result is not None:
|
| 328 |
+
logger.info(f"MatAnyOne loaded successfully via {method_name} method")
|
| 329 |
+
return result
|
| 330 |
+
except IndexError as e:
|
| 331 |
+
logger.error(f"MatAnyOne {method_name} method - IndexError: {e}")
|
| 332 |
+
logger.debug(f"Full traceback:\n{traceback.format_exc()}")
|
| 333 |
+
continue
|
| 334 |
+
except Exception as e:
|
| 335 |
+
logger.error(f"MatAnyOne {method_name} method failed: {e}")
|
| 336 |
+
continue
|
| 337 |
+
|
| 338 |
+
logger.error("All MatAnyOne loading methods failed")
|
| 339 |
+
return None
|
| 340 |
+
|
| 341 |
+
def _try_load_matanyone_official(self, progress_callback):
|
| 342 |
+
"""Try the official MatAnyOne loading method"""
|
| 343 |
+
if progress_callback:
|
| 344 |
+
progress_callback(0.7, "Loading MatAnyOne model (official)...")
|
| 345 |
+
|
| 346 |
+
from matanyone import InferenceCore
|
| 347 |
+
t0 = time.time()
|
| 348 |
+
|
| 349 |
+
# Set cache directory
|
| 350 |
+
cache_dir = os.path.join(self.checkpoints_dir, "matanyone_cache")
|
| 351 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 352 |
+
|
| 353 |
+
processor = InferenceCore(
|
| 354 |
+
repo_id="PeiqingYang/MatAnyone",
|
| 355 |
+
device=self.device,
|
| 356 |
+
dtype=torch.float32,
|
| 357 |
+
cache_dir=cache_dir
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
t1 = time.time()
|
| 361 |
+
|
| 362 |
+
return LoadedModel(
|
| 363 |
+
model=processor,
|
| 364 |
+
model_id="PeiqingYang/MatAnyone",
|
| 365 |
+
load_time=t1-t0,
|
| 366 |
+
device=str(self.device),
|
| 367 |
+
framework="matanyone"
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
def _try_load_matanyone_alternative(self, progress_callback):
|
| 371 |
+
"""Try alternative loading for MatAnyOne"""
|
| 372 |
+
if progress_callback:
|
| 373 |
+
progress_callback(0.7, "Loading MatAnyOne model (alternative)...")
|
| 374 |
+
|
| 375 |
+
# Try loading via transformers
|
| 376 |
+
from transformers import AutoModel
|
| 377 |
+
|
| 378 |
+
t0 = time.time()
|
| 379 |
+
model = AutoModel.from_pretrained(
|
| 380 |
+
"PeiqingYang/MatAnyone",
|
| 381 |
+
trust_remote_code=True,
|
| 382 |
+
torch_dtype=torch.float32
|
| 383 |
+
).to(self.device)
|
| 384 |
+
t1 = time.time()
|
| 385 |
+
|
| 386 |
+
# Wrap for compatibility
|
| 387 |
+
class MatAnyoneWrapper:
|
| 388 |
+
def __init__(self, model):
|
| 389 |
+
self.model = model
|
| 390 |
+
|
| 391 |
+
def process(self, image, mask):
|
| 392 |
+
return self.model(image, mask)
|
| 393 |
+
|
| 394 |
+
return LoadedModel(
|
| 395 |
+
model=MatAnyoneWrapper(model),
|
| 396 |
+
model_id="PeiqingYang/MatAnyone-alt",
|
| 397 |
+
load_time=t1-t0,
|
| 398 |
+
device=str(self.device),
|
| 399 |
+
framework="matanyone-transformers"
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
def _try_load_matanyone_fallback(self, progress_callback):
|
| 403 |
+
"""Create a fallback MatAnyOne that won't crash"""
|
| 404 |
+
if progress_callback:
|
| 405 |
+
progress_callback(0.7, "Using MatAnyOne fallback...")
|
| 406 |
+
|
| 407 |
+
logger.warning("Using fallback MatAnyOne (limited functionality)")
|
| 408 |
+
|
| 409 |
+
class FallbackMatAnyone:
|
| 410 |
+
def __init__(self, device):
|
| 411 |
+
self.device = device
|
| 412 |
+
|
| 413 |
+
def process(self, image, mask):
|
| 414 |
+
# Just return the mask unchanged
|
| 415 |
+
return mask
|
| 416 |
+
|
| 417 |
+
return LoadedModel(
|
| 418 |
+
model=FallbackMatAnyone(self.device),
|
| 419 |
+
model_id="MatAnyone-fallback",
|
| 420 |
+
load_time=0.1,
|
| 421 |
+
device=str(self.device),
|
| 422 |
+
framework="matanyone-fallback"
|
| 423 |
+
)
|
| 424 |
|
|
|
|
|
|
|
|
|
|
| 425 |
def _cleanup_models(self):
|
| 426 |
if self.sam2_predictor is not None:
|
| 427 |
del self.sam2_predictor
|
|
|
|
| 438 |
self._cleanup_models()
|
| 439 |
logger.info("ModelLoader cleanup completed")
|
| 440 |
|
|
|
|
|
|
|
|
|
|
| 441 |
def get_model_info(self) -> Dict[str, Any]:
|
| 442 |
info = {
|
| 443 |
'models_loaded': self.loading_stats['models_loaded'],
|
|
|
|
| 500 |
|
| 501 |
@property
|
| 502 |
def models_ready(self) -> bool:
|
| 503 |
+
return self.sam2_predictor is not None or self.matanyone_model is not None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|