Update models/loaders/model_loader.py
Browse files- models/loaders/model_loader.py +23 -28
models/loaders/model_loader.py
CHANGED
|
@@ -5,9 +5,6 @@
|
|
| 5 |
(Modern version for BackgroundFX Pro – only edit this file for model loading logic)
|
| 6 |
"""
|
| 7 |
|
| 8 |
-
# ============================================================================
|
| 9 |
-
# IMPORTS AND DEPENDENCIES
|
| 10 |
-
# ============================================================================
|
| 11 |
import os
|
| 12 |
import gc
|
| 13 |
import sys
|
|
@@ -19,7 +16,6 @@
|
|
| 19 |
|
| 20 |
import torch
|
| 21 |
|
| 22 |
-
# Modular dependencies (adapt as your structure changes)
|
| 23 |
from core.exceptions import ModelLoadingError
|
| 24 |
from utils.hardware.device_manager import DeviceManager
|
| 25 |
from utils.system.memory_manager import MemoryManager
|
|
@@ -30,10 +26,6 @@
|
|
| 30 |
# LOADED MODEL DATA CONTAINER
|
| 31 |
# ============================================================================
|
| 32 |
class LoadedModel:
|
| 33 |
-
"""
|
| 34 |
-
Tracks loaded model + metadata.
|
| 35 |
-
Useful for dashboards, export, analytics, etc.
|
| 36 |
-
"""
|
| 37 |
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0, device: str = "", framework: str = ""):
|
| 38 |
self.model = model
|
| 39 |
self.model_id = model_id
|
|
@@ -57,10 +49,6 @@ def __repr__(self):
|
|
| 57 |
# MODEL LOADER CLASS
|
| 58 |
# ============================================================================
|
| 59 |
class ModelLoader:
|
| 60 |
-
"""
|
| 61 |
-
Loads and manages SAM2 and MatAnyOne models.
|
| 62 |
-
Tune all model-specific logic/settings here.
|
| 63 |
-
"""
|
| 64 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 65 |
self.device_manager = device_mgr
|
| 66 |
self.memory_manager = memory_mgr
|
|
@@ -86,10 +74,6 @@ def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
|
| 86 |
# MAIN LOADING FUNCTION (ORCHESTRATION)
|
| 87 |
# ============================================================================
|
| 88 |
def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_event=None) -> Tuple[Any, Any]:
|
| 89 |
-
"""
|
| 90 |
-
Loads both SAM2 and MatAnyOne models with error handling.
|
| 91 |
-
Returns: (sam2_predictor, matanyone_model)
|
| 92 |
-
"""
|
| 93 |
start_time = time.time()
|
| 94 |
self.loading_stats['loading_attempts'] += 1
|
| 95 |
|
|
@@ -100,6 +84,9 @@ def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_e
|
|
| 100 |
|
| 101 |
self._cleanup_models()
|
| 102 |
|
|
|
|
|
|
|
|
|
|
| 103 |
# Load SAM2 first
|
| 104 |
logger.info("Loading SAM2 predictor...")
|
| 105 |
if progress_callback:
|
|
@@ -158,10 +145,6 @@ def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_e
|
|
| 158 |
# SAM2 LOADING (OFFICIAL FROM_PRETRAINED)
|
| 159 |
# ============================================================================
|
| 160 |
def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
| 161 |
-
"""
|
| 162 |
-
Loads SAM2 using the official Hugging Face interface.
|
| 163 |
-
Returns: LoadedModel instance or None
|
| 164 |
-
"""
|
| 165 |
model_size = "large"
|
| 166 |
try:
|
| 167 |
if hasattr(self.device_manager, 'get_device_memory_gb'):
|
|
@@ -183,6 +166,7 @@ def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
|
| 183 |
"large": "facebook/sam2.1-hiera-large"
|
| 184 |
}
|
| 185 |
model_id = model_map.get(model_size, model_map["large"])
|
|
|
|
| 186 |
|
| 187 |
if progress_callback:
|
| 188 |
progress_callback(0.3, f"Loading SAM2 {model_size} model...")
|
|
@@ -191,6 +175,8 @@ def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
|
| 191 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 192 |
t0 = time.time()
|
| 193 |
predictor = SAM2ImagePredictor.from_pretrained(model_id)
|
|
|
|
|
|
|
| 194 |
if hasattr(predictor, 'model'):
|
| 195 |
predictor.model = predictor.model.to(self.device)
|
| 196 |
t1 = time.time()
|
|
@@ -202,21 +188,22 @@ def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
|
| 202 |
device=str(self.device),
|
| 203 |
framework="sam2"
|
| 204 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
except ImportError:
|
| 206 |
logger.error("SAM2 module not found. Install with: pip install sam2")
|
| 207 |
return None
|
| 208 |
except Exception as e:
|
| 209 |
logger.error(f"SAM2 loading failed: {e}")
|
|
|
|
| 210 |
return None
|
| 211 |
|
| 212 |
# ============================================================================
|
| 213 |
# MATANYONE LOADING (OFFICIAL INFERENCECORE)
|
| 214 |
# ============================================================================
|
| 215 |
def _load_matanyone_model(self, progress_callback: Optional[Callable] = None):
|
| 216 |
-
"""
|
| 217 |
-
Loads MatAnyOne using Hugging Face official 'matanyone' package.
|
| 218 |
-
Returns: LoadedModel instance or None
|
| 219 |
-
"""
|
| 220 |
try:
|
| 221 |
if progress_callback:
|
| 222 |
progress_callback(0.7, "Loading MatAnyOne model...")
|
|
@@ -224,12 +211,14 @@ def _load_matanyone_model(self, progress_callback: Optional[Callable] = None):
|
|
| 224 |
from matanyone import InferenceCore
|
| 225 |
t0 = time.time()
|
| 226 |
matanyone_kwargs = dict(
|
| 227 |
-
repo_id="PeiqingYang/MatAnyone",
|
| 228 |
-
device=self.device,
|
| 229 |
-
dtype=torch.float32,
|
| 230 |
-
# chunk_size=512,
|
| 231 |
)
|
|
|
|
| 232 |
processor = InferenceCore(**matanyone_kwargs)
|
|
|
|
| 233 |
t1 = time.time()
|
| 234 |
logger.info("MatAnyOne loaded successfully (InferenceCore)")
|
| 235 |
return LoadedModel(
|
|
@@ -239,11 +228,16 @@ def _load_matanyone_model(self, progress_callback: Optional[Callable] = None):
|
|
| 239 |
device=str(self.device),
|
| 240 |
framework="matanyone"
|
| 241 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
except ImportError:
|
| 243 |
logger.error("MatAnyOne module not found. Install with: pip install matanyone")
|
| 244 |
return None
|
| 245 |
except Exception as e:
|
| 246 |
logger.error(f"MatAnyOne loading failed: {e}")
|
|
|
|
| 247 |
return None
|
| 248 |
|
| 249 |
# ============================================================================
|
|
@@ -335,3 +329,4 @@ def models_ready(self) -> bool:
|
|
| 335 |
# ============================================================================
|
| 336 |
# END MODEL LOADER
|
| 337 |
# ============================================================================
|
|
|
|
|
|
| 5 |
(Modern version for BackgroundFX Pro – only edit this file for model loading logic)
|
| 6 |
"""
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
import os
|
| 9 |
import gc
|
| 10 |
import sys
|
|
|
|
| 16 |
|
| 17 |
import torch
|
| 18 |
|
|
|
|
| 19 |
from core.exceptions import ModelLoadingError
|
| 20 |
from utils.hardware.device_manager import DeviceManager
|
| 21 |
from utils.system.memory_manager import MemoryManager
|
|
|
|
| 26 |
# LOADED MODEL DATA CONTAINER
|
| 27 |
# ============================================================================
|
| 28 |
class LoadedModel:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0, device: str = "", framework: str = ""):
|
| 30 |
self.model = model
|
| 31 |
self.model_id = model_id
|
|
|
|
| 49 |
# MODEL LOADER CLASS
|
| 50 |
# ============================================================================
|
| 51 |
class ModelLoader:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 53 |
self.device_manager = device_mgr
|
| 54 |
self.memory_manager = memory_mgr
|
|
|
|
| 74 |
# MAIN LOADING FUNCTION (ORCHESTRATION)
|
| 75 |
# ============================================================================
|
| 76 |
def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_event=None) -> Tuple[Any, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
start_time = time.time()
|
| 78 |
self.loading_stats['loading_attempts'] += 1
|
| 79 |
|
|
|
|
| 84 |
|
| 85 |
self._cleanup_models()
|
| 86 |
|
| 87 |
+
# --- DIAG: Log device and model selection step
|
| 88 |
+
logger.info(f"Device for models: {self.device}")
|
| 89 |
+
|
| 90 |
# Load SAM2 first
|
| 91 |
logger.info("Loading SAM2 predictor...")
|
| 92 |
if progress_callback:
|
|
|
|
| 145 |
# SAM2 LOADING (OFFICIAL FROM_PRETRAINED)
|
| 146 |
# ============================================================================
|
| 147 |
def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
model_size = "large"
|
| 149 |
try:
|
| 150 |
if hasattr(self.device_manager, 'get_device_memory_gb'):
|
|
|
|
| 166 |
"large": "facebook/sam2.1-hiera-large"
|
| 167 |
}
|
| 168 |
model_id = model_map.get(model_size, model_map["large"])
|
| 169 |
+
logger.info(f"[DIAG] About to load SAM2 model_id: {model_id} on device {self.device}")
|
| 170 |
|
| 171 |
if progress_callback:
|
| 172 |
progress_callback(0.3, f"Loading SAM2 {model_size} model...")
|
|
|
|
| 175 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 176 |
t0 = time.time()
|
| 177 |
predictor = SAM2ImagePredictor.from_pretrained(model_id)
|
| 178 |
+
logger.info(f"[DIAG] SAM2 predictor instance type: {type(predictor)}")
|
| 179 |
+
# If this fails, it's likely a missing model or bad download
|
| 180 |
if hasattr(predictor, 'model'):
|
| 181 |
predictor.model = predictor.model.to(self.device)
|
| 182 |
t1 = time.time()
|
|
|
|
| 188 |
device=str(self.device),
|
| 189 |
framework="sam2"
|
| 190 |
)
|
| 191 |
+
except IndexError as e:
|
| 192 |
+
logger.error(f"SAM2 IndexError: {e}. (Did the model download fail? Wrong model_id?)")
|
| 193 |
+
logger.error(traceback.format_exc())
|
| 194 |
+
return None
|
| 195 |
except ImportError:
|
| 196 |
logger.error("SAM2 module not found. Install with: pip install sam2")
|
| 197 |
return None
|
| 198 |
except Exception as e:
|
| 199 |
logger.error(f"SAM2 loading failed: {e}")
|
| 200 |
+
logger.error(traceback.format_exc())
|
| 201 |
return None
|
| 202 |
|
| 203 |
# ============================================================================
|
| 204 |
# MATANYONE LOADING (OFFICIAL INFERENCECORE)
|
| 205 |
# ============================================================================
|
| 206 |
def _load_matanyone_model(self, progress_callback: Optional[Callable] = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
try:
|
| 208 |
if progress_callback:
|
| 209 |
progress_callback(0.7, "Loading MatAnyOne model...")
|
|
|
|
| 211 |
from matanyone import InferenceCore
|
| 212 |
t0 = time.time()
|
| 213 |
matanyone_kwargs = dict(
|
| 214 |
+
repo_id="PeiqingYang/MatAnyone",
|
| 215 |
+
device=self.device,
|
| 216 |
+
dtype=torch.float32,
|
| 217 |
+
# chunk_size=512,
|
| 218 |
)
|
| 219 |
+
logger.info(f"[DIAG] About to load MatAnyOne from repo: {matanyone_kwargs['repo_id']} on device {self.device}")
|
| 220 |
processor = InferenceCore(**matanyone_kwargs)
|
| 221 |
+
logger.info(f"[DIAG] MatAnyOne processor type: {type(processor)}")
|
| 222 |
t1 = time.time()
|
| 223 |
logger.info("MatAnyOne loaded successfully (InferenceCore)")
|
| 224 |
return LoadedModel(
|
|
|
|
| 228 |
device=str(self.device),
|
| 229 |
framework="matanyone"
|
| 230 |
)
|
| 231 |
+
except IndexError as e:
|
| 232 |
+
logger.error(f"MatAnyOne IndexError: {e}. (Did the model download fail? Wrong repo_id?)")
|
| 233 |
+
logger.error(traceback.format_exc())
|
| 234 |
+
return None
|
| 235 |
except ImportError:
|
| 236 |
logger.error("MatAnyOne module not found. Install with: pip install matanyone")
|
| 237 |
return None
|
| 238 |
except Exception as e:
|
| 239 |
logger.error(f"MatAnyOne loading failed: {e}")
|
| 240 |
+
logger.error(traceback.format_exc())
|
| 241 |
return None
|
| 242 |
|
| 243 |
# ============================================================================
|
|
|
|
| 329 |
# ============================================================================
|
| 330 |
# END MODEL LOADER
|
| 331 |
# ============================================================================
|
| 332 |
+
|