Update models/loaders/model_loader.py
Browse files- models/loaders/model_loader.py +68 -34
models/loaders/model_loader.py
CHANGED
|
@@ -26,6 +26,33 @@
|
|
| 26 |
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# ============================================================================
|
| 30 |
# MODEL LOADER CLASS
|
| 31 |
# ============================================================================
|
|
@@ -34,14 +61,13 @@ class ModelLoader:
|
|
| 34 |
Loads and manages SAM2 and MatAnyOne models.
|
| 35 |
Tune all model-specific logic/settings here.
|
| 36 |
"""
|
| 37 |
-
|
| 38 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 39 |
self.device_manager = device_mgr
|
| 40 |
self.memory_manager = memory_mgr
|
| 41 |
self.device = self.device_manager.get_optimal_device()
|
| 42 |
|
| 43 |
-
self.sam2_predictor = None
|
| 44 |
-
self.matanyone_model = None #
|
| 45 |
|
| 46 |
self.checkpoints_dir = "./checkpoints"
|
| 47 |
os.makedirs(self.checkpoints_dir, exist_ok=True)
|
|
@@ -78,12 +104,13 @@ def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_e
|
|
| 78 |
logger.info("Loading SAM2 predictor...")
|
| 79 |
if progress_callback:
|
| 80 |
progress_callback(0.1, "Loading SAM2 predictor...")
|
| 81 |
-
|
| 82 |
|
| 83 |
-
if
|
| 84 |
logger.warning("SAM2 loading failed - will use fallback segmentation")
|
| 85 |
else:
|
| 86 |
-
|
|
|
|
| 87 |
self.loading_stats['sam2_load_time'] = sam2_time
|
| 88 |
logger.info(f"SAM2 loaded in {sam2_time:.2f}s")
|
| 89 |
|
|
@@ -93,19 +120,20 @@ def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_e
|
|
| 93 |
progress_callback(0.6, "Loading MatAnyOne model...")
|
| 94 |
matanyone_start = time.time()
|
| 95 |
|
| 96 |
-
|
| 97 |
|
| 98 |
-
if
|
| 99 |
logger.warning("MatAnyOne loading failed - will use OpenCV refinement")
|
| 100 |
else:
|
| 101 |
-
|
|
|
|
| 102 |
self.loading_stats['matanyone_load_time'] = matanyone_time
|
| 103 |
logger.info(f"MatAnyOne loaded in {matanyone_time:.1f}s")
|
| 104 |
|
| 105 |
# Final status
|
| 106 |
total_time = time.time() - start_time
|
| 107 |
self.loading_stats['total_load_time'] = total_time
|
| 108 |
-
self.loading_stats['models_loaded'] =
|
| 109 |
|
| 110 |
if progress_callback:
|
| 111 |
if self.sam2_predictor or self.matanyone_model:
|
|
@@ -115,7 +143,7 @@ def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_e
|
|
| 115 |
|
| 116 |
logger.info(f"Model loading completed in {total_time:.2f}s")
|
| 117 |
|
| 118 |
-
return self.sam2_predictor, self.matanyone_model
|
| 119 |
|
| 120 |
except Exception as e:
|
| 121 |
error_msg = f"Model loading failed: {str(e)}"
|
|
@@ -132,7 +160,7 @@ def load_all_models(self, progress_callback: Optional[Callable] = None, cancel_e
|
|
| 132 |
def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
| 133 |
"""
|
| 134 |
Loads SAM2 using the official Hugging Face interface.
|
| 135 |
-
Returns:
|
| 136 |
"""
|
| 137 |
model_size = "large"
|
| 138 |
try:
|
|
@@ -161,11 +189,19 @@ def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
|
| 161 |
|
| 162 |
try:
|
| 163 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
|
| 164 |
predictor = SAM2ImagePredictor.from_pretrained(model_id)
|
| 165 |
if hasattr(predictor, 'model'):
|
| 166 |
predictor.model = predictor.model.to(self.device)
|
|
|
|
| 167 |
logger.info("SAM2 loaded successfully via official from_pretrained")
|
| 168 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
except ImportError:
|
| 170 |
logger.error("SAM2 module not found. Install with: pip install sam2")
|
| 171 |
return None
|
|
@@ -179,34 +215,30 @@ def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
|
| 179 |
def _load_matanyone_model(self, progress_callback: Optional[Callable] = None):
|
| 180 |
"""
|
| 181 |
Loads MatAnyOne using Hugging Face official 'matanyone' package.
|
| 182 |
-
Returns:
|
| 183 |
-
|
| 184 |
-
---------- MATANYONE TUNING SECTION ----------
|
| 185 |
-
To adjust MatAnyOne settings, change arguments to InferenceCore below!
|
| 186 |
-
(e.g., for precision, model variant, device, chunk size, etc.)
|
| 187 |
-
---------------------------------------------
|
| 188 |
"""
|
| 189 |
try:
|
| 190 |
if progress_callback:
|
| 191 |
progress_callback(0.7, "Loading MatAnyOne model...")
|
| 192 |
|
| 193 |
-
# --- HIGHLIGHT: SET ANY MatAnyOne SETTINGS HERE ---
|
| 194 |
from matanyone import InferenceCore
|
| 195 |
-
|
| 196 |
-
# Example: To set chunk size or custom model repo, add kwargs here.
|
| 197 |
-
# See: https://huggingface.co/PeiqingYang/MatAnyone for config options
|
| 198 |
-
|
| 199 |
matanyone_kwargs = dict(
|
| 200 |
repo_id="PeiqingYang/MatAnyone", # You can change to any compatible Hugging Face repo
|
| 201 |
device=self.device, # Device to load on ("cuda" or "cpu")
|
| 202 |
-
dtype=torch.float32, #
|
| 203 |
# chunk_size=512, # Optional: for memory tuning on large videos
|
| 204 |
)
|
| 205 |
-
|
| 206 |
processor = InferenceCore(**matanyone_kwargs)
|
|
|
|
| 207 |
logger.info("MatAnyOne loaded successfully (InferenceCore)")
|
| 208 |
-
return
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
except ImportError:
|
| 211 |
logger.error("MatAnyOne module not found. Install with: pip install matanyone")
|
| 212 |
return None
|
|
@@ -245,9 +277,11 @@ def get_model_info(self) -> Dict[str, Any]:
|
|
| 245 |
'loading_stats': self.loading_stats.copy()
|
| 246 |
}
|
| 247 |
if self.sam2_predictor is not None:
|
| 248 |
-
info['sam2_model_type'] = type(self.sam2_predictor).__name__
|
|
|
|
| 249 |
if self.matanyone_model is not None:
|
| 250 |
-
info['matanyone_model_type'] = type(self.matanyone_model).__name__
|
|
|
|
| 251 |
return info
|
| 252 |
|
| 253 |
def get_load_summary(self) -> str:
|
|
@@ -258,11 +292,11 @@ def get_load_summary(self) -> str:
|
|
| 258 |
total_time = self.loading_stats['total_load_time']
|
| 259 |
summary = f"Models loaded in {total_time:.1f}s\n"
|
| 260 |
if self.sam2_predictor:
|
| 261 |
-
summary += f"✓ SAM2: {sam2_time:.1f}s\n"
|
| 262 |
else:
|
| 263 |
summary += f"✗ SAM2: Failed (using fallback)\n"
|
| 264 |
if self.matanyone_model:
|
| 265 |
-
summary += f"✓ MatAnyOne: {matanyone_time:.1f}s\n"
|
| 266 |
else:
|
| 267 |
summary += f"✗ MatAnyOne: Failed (using OpenCV)\n"
|
| 268 |
summary += f"Device: {self.device}"
|
|
@@ -278,7 +312,8 @@ def validate_models(self) -> bool:
|
|
| 278 |
try:
|
| 279 |
has_valid_model = False
|
| 280 |
if self.sam2_predictor is not None:
|
| 281 |
-
|
|
|
|
| 282 |
has_valid_model = True
|
| 283 |
if self.matanyone_model is not None:
|
| 284 |
has_valid_model = True
|
|
@@ -300,4 +335,3 @@ def models_ready(self) -> bool:
|
|
| 300 |
# ============================================================================
|
| 301 |
# END MODEL LOADER
|
| 302 |
# ============================================================================
|
| 303 |
-
|
|
|
|
| 26 |
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
| 29 |
+
# ============================================================================
|
| 30 |
+
# LOADED MODEL DATA CONTAINER
|
| 31 |
+
# ============================================================================
|
| 32 |
+
class LoadedModel:
|
| 33 |
+
"""
|
| 34 |
+
Tracks loaded model + metadata.
|
| 35 |
+
Useful for dashboards, export, analytics, etc.
|
| 36 |
+
"""
|
| 37 |
+
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0, device: str = "", framework: str = ""):
|
| 38 |
+
self.model = model
|
| 39 |
+
self.model_id = model_id
|
| 40 |
+
self.load_time = load_time
|
| 41 |
+
self.device = device
|
| 42 |
+
self.framework = framework
|
| 43 |
+
|
| 44 |
+
def to_dict(self):
|
| 45 |
+
return {
|
| 46 |
+
"model_id": self.model_id,
|
| 47 |
+
"framework": self.framework,
|
| 48 |
+
"device": self.device,
|
| 49 |
+
"load_time": self.load_time,
|
| 50 |
+
"loaded": self.model is not None
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
def __repr__(self):
|
| 54 |
+
return f"LoadedModel(id={self.model_id}, loaded={self.model is not None}, device={self.device}, framework={self.framework}, load_time={self.load_time:.2f}s)"
|
| 55 |
+
|
| 56 |
# ============================================================================
|
| 57 |
# MODEL LOADER CLASS
|
| 58 |
# ============================================================================
|
|
|
|
| 61 |
Loads and manages SAM2 and MatAnyOne models.
|
| 62 |
Tune all model-specific logic/settings here.
|
| 63 |
"""
|
|
|
|
| 64 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 65 |
self.device_manager = device_mgr
|
| 66 |
self.memory_manager = memory_mgr
|
| 67 |
self.device = self.device_manager.get_optimal_device()
|
| 68 |
|
| 69 |
+
self.sam2_predictor = None # LoadedModel instance or None
|
| 70 |
+
self.matanyone_model = None # LoadedModel instance or None
|
| 71 |
|
| 72 |
self.checkpoints_dir = "./checkpoints"
|
| 73 |
os.makedirs(self.checkpoints_dir, exist_ok=True)
|
|
|
|
| 104 |
logger.info("Loading SAM2 predictor...")
|
| 105 |
if progress_callback:
|
| 106 |
progress_callback(0.1, "Loading SAM2 predictor...")
|
| 107 |
+
sam2_loaded = self._load_sam2_predictor(progress_callback)
|
| 108 |
|
| 109 |
+
if sam2_loaded is None:
|
| 110 |
logger.warning("SAM2 loading failed - will use fallback segmentation")
|
| 111 |
else:
|
| 112 |
+
self.sam2_predictor = sam2_loaded
|
| 113 |
+
sam2_time = self.sam2_predictor.load_time
|
| 114 |
self.loading_stats['sam2_load_time'] = sam2_time
|
| 115 |
logger.info(f"SAM2 loaded in {sam2_time:.2f}s")
|
| 116 |
|
|
|
|
| 120 |
progress_callback(0.6, "Loading MatAnyOne model...")
|
| 121 |
matanyone_start = time.time()
|
| 122 |
|
| 123 |
+
matanyone_loaded = self._load_matanyone_model(progress_callback)
|
| 124 |
|
| 125 |
+
if matanyone_loaded is None:
|
| 126 |
logger.warning("MatAnyOne loading failed - will use OpenCV refinement")
|
| 127 |
else:
|
| 128 |
+
self.matanyone_model = matanyone_loaded
|
| 129 |
+
matanyone_time = self.matanyone_model.load_time
|
| 130 |
self.loading_stats['matanyone_load_time'] = matanyone_time
|
| 131 |
logger.info(f"MatAnyOne loaded in {matanyone_time:.1f}s")
|
| 132 |
|
| 133 |
# Final status
|
| 134 |
total_time = time.time() - start_time
|
| 135 |
self.loading_stats['total_load_time'] = total_time
|
| 136 |
+
self.loading_stats['models_loaded'] = bool(self.sam2_predictor or self.matanyone_model)
|
| 137 |
|
| 138 |
if progress_callback:
|
| 139 |
if self.sam2_predictor or self.matanyone_model:
|
|
|
|
| 143 |
|
| 144 |
logger.info(f"Model loading completed in {total_time:.2f}s")
|
| 145 |
|
| 146 |
+
return (self.sam2_predictor, self.matanyone_model)
|
| 147 |
|
| 148 |
except Exception as e:
|
| 149 |
error_msg = f"Model loading failed: {str(e)}"
|
|
|
|
| 160 |
def _load_sam2_predictor(self, progress_callback: Optional[Callable] = None):
|
| 161 |
"""
|
| 162 |
Loads SAM2 using the official Hugging Face interface.
|
| 163 |
+
Returns: LoadedModel instance or None
|
| 164 |
"""
|
| 165 |
model_size = "large"
|
| 166 |
try:
|
|
|
|
| 189 |
|
| 190 |
try:
|
| 191 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 192 |
+
t0 = time.time()
|
| 193 |
predictor = SAM2ImagePredictor.from_pretrained(model_id)
|
| 194 |
if hasattr(predictor, 'model'):
|
| 195 |
predictor.model = predictor.model.to(self.device)
|
| 196 |
+
t1 = time.time()
|
| 197 |
logger.info("SAM2 loaded successfully via official from_pretrained")
|
| 198 |
+
return LoadedModel(
|
| 199 |
+
model=predictor,
|
| 200 |
+
model_id=model_id,
|
| 201 |
+
load_time=t1-t0,
|
| 202 |
+
device=str(self.device),
|
| 203 |
+
framework="sam2"
|
| 204 |
+
)
|
| 205 |
except ImportError:
|
| 206 |
logger.error("SAM2 module not found. Install with: pip install sam2")
|
| 207 |
return None
|
|
|
|
| 215 |
def _load_matanyone_model(self, progress_callback: Optional[Callable] = None):
|
| 216 |
"""
|
| 217 |
Loads MatAnyOne using Hugging Face official 'matanyone' package.
|
| 218 |
+
Returns: LoadedModel instance or None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
"""
|
| 220 |
try:
|
| 221 |
if progress_callback:
|
| 222 |
progress_callback(0.7, "Loading MatAnyOne model...")
|
| 223 |
|
|
|
|
| 224 |
from matanyone import InferenceCore
|
| 225 |
+
t0 = time.time()
|
|
|
|
|
|
|
|
|
|
| 226 |
matanyone_kwargs = dict(
|
| 227 |
repo_id="PeiqingYang/MatAnyone", # You can change to any compatible Hugging Face repo
|
| 228 |
device=self.device, # Device to load on ("cuda" or "cpu")
|
| 229 |
+
dtype=torch.float32, # Or torch.float16 for fast, but only for GPUs with good fp16
|
| 230 |
# chunk_size=512, # Optional: for memory tuning on large videos
|
| 231 |
)
|
|
|
|
| 232 |
processor = InferenceCore(**matanyone_kwargs)
|
| 233 |
+
t1 = time.time()
|
| 234 |
logger.info("MatAnyOne loaded successfully (InferenceCore)")
|
| 235 |
+
return LoadedModel(
|
| 236 |
+
model=processor,
|
| 237 |
+
model_id=matanyone_kwargs["repo_id"],
|
| 238 |
+
load_time=t1-t0,
|
| 239 |
+
device=str(self.device),
|
| 240 |
+
framework="matanyone"
|
| 241 |
+
)
|
| 242 |
except ImportError:
|
| 243 |
logger.error("MatAnyOne module not found. Install with: pip install matanyone")
|
| 244 |
return None
|
|
|
|
| 277 |
'loading_stats': self.loading_stats.copy()
|
| 278 |
}
|
| 279 |
if self.sam2_predictor is not None:
|
| 280 |
+
info['sam2_model_type'] = type(self.sam2_predictor.model).__name__
|
| 281 |
+
info['sam2_metadata'] = self.sam2_predictor.to_dict()
|
| 282 |
if self.matanyone_model is not None:
|
| 283 |
+
info['matanyone_model_type'] = type(self.matanyone_model.model).__name__
|
| 284 |
+
info['matanyone_metadata'] = self.matanyone_model.to_dict()
|
| 285 |
return info
|
| 286 |
|
| 287 |
def get_load_summary(self) -> str:
|
|
|
|
| 292 |
total_time = self.loading_stats['total_load_time']
|
| 293 |
summary = f"Models loaded in {total_time:.1f}s\n"
|
| 294 |
if self.sam2_predictor:
|
| 295 |
+
summary += f"✓ SAM2: {sam2_time:.1f}s (ID: {self.sam2_predictor.model_id})\n"
|
| 296 |
else:
|
| 297 |
summary += f"✗ SAM2: Failed (using fallback)\n"
|
| 298 |
if self.matanyone_model:
|
| 299 |
+
summary += f"✓ MatAnyOne: {matanyone_time:.1f}s (ID: {self.matanyone_model.model_id})\n"
|
| 300 |
else:
|
| 301 |
summary += f"✗ MatAnyOne: Failed (using OpenCV)\n"
|
| 302 |
summary += f"Device: {self.device}"
|
|
|
|
| 312 |
try:
|
| 313 |
has_valid_model = False
|
| 314 |
if self.sam2_predictor is not None:
|
| 315 |
+
model = self.sam2_predictor.model
|
| 316 |
+
if hasattr(model, 'set_image') or hasattr(model, 'predict'):
|
| 317 |
has_valid_model = True
|
| 318 |
if self.matanyone_model is not None:
|
| 319 |
has_valid_model = True
|
|
|
|
| 335 |
# ============================================================================
|
| 336 |
# END MODEL LOADER
|
| 337 |
# ============================================================================
|
|
|