|
"""ResNet in PyTorch. |
|
ImageNet-Style ResNet |
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun |
|
Deep Residual Learning for Image Recognition. arXiv:1512.03385 |
|
Adapted from: https://github.com/bearpaw/pytorch-classification |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1, is_last=False): |
|
super(BasicBlock, self).__init__() |
|
self.is_last = is_last |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion * planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion * planes) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.bn2(self.conv2(out)) |
|
out += self.shortcut(x) |
|
preact = out |
|
out = F.relu(out) |
|
if self.is_last: |
|
return out, preact |
|
else: |
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, in_planes, planes, stride=1, is_last=False): |
|
super(Bottleneck, self).__init__() |
|
self.is_last = is_last |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(self.expansion * planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion * planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion * planes) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
out = self.bn3(self.conv3(out)) |
|
out += self.shortcut(x) |
|
preact = out |
|
out = F.relu(out) |
|
if self.is_last: |
|
return out, preact |
|
else: |
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__(self, block, num_blocks, in_channel=3, zero_init_residual=False, pool=False): |
|
super(ResNet, self).__init__() |
|
self.in_planes = 64 |
|
|
|
if pool: |
|
self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
else: |
|
self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) if pool else nn.Identity() |
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) |
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1] * (num_blocks - 1) |
|
layers = [] |
|
for i in range(num_blocks): |
|
stride = strides[i] |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x, layer=100): |
|
out = self.maxpool(F.relu(self.bn1(self.conv1(x)))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = self.layer4(out) |
|
out = self.avgpool(out) |
|
out = torch.flatten(out, 1) |
|
return out |
|
|
|
|
|
def resnet18(**kwargs): |
|
return ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) |
|
|
|
|
|
def resnet34(**kwargs): |
|
return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) |
|
|
|
|
|
def resnet50(**kwargs): |
|
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) |
|
|
|
|
|
def resnet101(**kwargs): |
|
return ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) |
|
|
|
|
|
model_dict = { |
|
'resnet18': [resnet18, 512], |
|
'resnet34': [resnet34, 512], |
|
'resnet50': [resnet50, 2048], |
|
'resnet101': [resnet101, 2048], |
|
} |
|
|
|
|
|
class LinearBatchNorm(nn.Module): |
|
"""Implements BatchNorm1d by BatchNorm2d, for SyncBN purpose""" |
|
|
|
def __init__(self, dim, affine=True): |
|
super(LinearBatchNorm, self).__init__() |
|
self.dim = dim |
|
self.bn = nn.BatchNorm2d(dim, affine=affine) |
|
|
|
def forward(self, x): |
|
x = x.view(-1, self.dim, 1, 1) |
|
x = self.bn(x) |
|
x = x.view(-1, self.dim) |
|
return x |
|
|
|
|
|
class SupConResNet(nn.Module): |
|
"""backbone + projection head""" |
|
|
|
def __init__(self, name='resnet50', head='mlp', feat_dim=128, pool=False): |
|
super(SupConResNet, self).__init__() |
|
model_fun, dim_in = model_dict[name] |
|
self.encoder = model_fun(pool=pool) |
|
if head == 'linear': |
|
self.head = nn.Linear(dim_in, feat_dim) |
|
elif head == 'mlp': |
|
self.head = nn.Sequential( |
|
nn.Linear(dim_in, dim_in), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(dim_in, feat_dim) |
|
) |
|
else: |
|
raise NotImplementedError( |
|
'head not supported: {}'.format(head)) |
|
|
|
def forward(self, x): |
|
feat = self.encoder(x) |
|
feat = F.normalize(self.head(feat), dim=1) |
|
return feat |
|
|
|
|
|
class SupCEResNet(nn.Module): |
|
"""encoder + classifier""" |
|
|
|
def __init__(self, name='resnet50', num_classes=10, pool=False): |
|
super(SupCEResNet, self).__init__() |
|
model_fun, dim_in = model_dict[name] |
|
self.encoder = model_fun(pool=pool) |
|
self.fc = nn.Linear(dim_in, num_classes) |
|
|
|
def forward(self, x): |
|
return self.fc(self.encoder(x)) |
|
|
|
|
|
class LinearClassifier(nn.Module): |
|
"""Linear classifier""" |
|
|
|
def __init__(self, name='resnet50', num_classes=10): |
|
super(LinearClassifier, self).__init__() |
|
_, feat_dim = model_dict[name] |
|
self.fc = nn.Linear(feat_dim, num_classes) |
|
|
|
def forward(self, features): |
|
return self.fc(features) |
|
|