Upload 3 files
Browse files- model.pth +3 -0
- requirments.txt +6 -0
- resnet.py +217 -0
model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a4d2f883bffa3447651ffcd7561245014edfa0c7b979ae22dee7960df9a94c11
|
| 3 |
+
size 224033335
|
requirments.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.2.0
|
| 2 |
+
torchvision==0.17.0
|
| 3 |
+
gradio==4.21.0
|
| 4 |
+
Pillow==10.2.0
|
| 5 |
+
numpy==1.26.4
|
| 6 |
+
scikit-learn==1.4.1.post1
|
resnet.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""ResNet in PyTorch.
|
| 2 |
+
ImageNet-Style ResNet
|
| 3 |
+
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
|
| 4 |
+
Deep Residual Learning for Image Recognition. arXiv:1512.03385
|
| 5 |
+
Adapted from: https://github.com/bearpaw/pytorch-classification
|
| 6 |
+
"""
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class BasicBlock(nn.Module):
|
| 13 |
+
expansion = 1
|
| 14 |
+
|
| 15 |
+
def __init__(self, in_planes, planes, stride=1, is_last=False):
|
| 16 |
+
super(BasicBlock, self).__init__()
|
| 17 |
+
self.is_last = is_last
|
| 18 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
| 19 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 20 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
|
| 21 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 22 |
+
|
| 23 |
+
self.shortcut = nn.Sequential()
|
| 24 |
+
if stride != 1 or in_planes != self.expansion * planes:
|
| 25 |
+
self.shortcut = nn.Sequential(
|
| 26 |
+
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
|
| 27 |
+
nn.BatchNorm2d(self.expansion * planes)
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
def forward(self, x):
|
| 31 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
| 32 |
+
out = self.bn2(self.conv2(out))
|
| 33 |
+
out += self.shortcut(x)
|
| 34 |
+
preact = out
|
| 35 |
+
out = F.relu(out)
|
| 36 |
+
if self.is_last:
|
| 37 |
+
return out, preact
|
| 38 |
+
else:
|
| 39 |
+
return out
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class Bottleneck(nn.Module):
|
| 43 |
+
expansion = 4
|
| 44 |
+
|
| 45 |
+
def __init__(self, in_planes, planes, stride=1, is_last=False):
|
| 46 |
+
super(Bottleneck, self).__init__()
|
| 47 |
+
self.is_last = is_last
|
| 48 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
|
| 49 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 50 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
| 51 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 52 |
+
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
|
| 53 |
+
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
|
| 54 |
+
|
| 55 |
+
self.shortcut = nn.Sequential()
|
| 56 |
+
if stride != 1 or in_planes != self.expansion * planes:
|
| 57 |
+
self.shortcut = nn.Sequential(
|
| 58 |
+
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
|
| 59 |
+
nn.BatchNorm2d(self.expansion * planes)
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
def forward(self, x):
|
| 63 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
| 64 |
+
out = F.relu(self.bn2(self.conv2(out)))
|
| 65 |
+
out = self.bn3(self.conv3(out))
|
| 66 |
+
out += self.shortcut(x)
|
| 67 |
+
preact = out
|
| 68 |
+
out = F.relu(out)
|
| 69 |
+
if self.is_last:
|
| 70 |
+
return out, preact
|
| 71 |
+
else:
|
| 72 |
+
return out
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class ResNet(nn.Module):
|
| 76 |
+
def __init__(self, block, num_blocks, in_channel=3, zero_init_residual=False, pool=False):
|
| 77 |
+
super(ResNet, self).__init__()
|
| 78 |
+
self.in_planes = 64
|
| 79 |
+
|
| 80 |
+
if pool:
|
| 81 |
+
self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
| 82 |
+
else:
|
| 83 |
+
self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
| 84 |
+
self.bn1 = nn.BatchNorm2d(64)
|
| 85 |
+
|
| 86 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) if pool else nn.Identity()
|
| 87 |
+
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
| 88 |
+
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
| 89 |
+
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
| 90 |
+
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
| 91 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
| 92 |
+
|
| 93 |
+
for m in self.modules():
|
| 94 |
+
if isinstance(m, nn.Conv2d):
|
| 95 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 96 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
| 97 |
+
nn.init.constant_(m.weight, 1)
|
| 98 |
+
nn.init.constant_(m.bias, 0)
|
| 99 |
+
|
| 100 |
+
# Zero-initialize the last BN in each residual branch,
|
| 101 |
+
# so that the residual branch starts with zeros, and each residual block behaves
|
| 102 |
+
# like an identity. This improves the model by 0.2~0.3% according to:
|
| 103 |
+
# https://arxiv.org/abs/1706.02677
|
| 104 |
+
if zero_init_residual:
|
| 105 |
+
for m in self.modules():
|
| 106 |
+
if isinstance(m, Bottleneck):
|
| 107 |
+
nn.init.constant_(m.bn3.weight, 0)
|
| 108 |
+
elif isinstance(m, BasicBlock):
|
| 109 |
+
nn.init.constant_(m.bn2.weight, 0)
|
| 110 |
+
|
| 111 |
+
def _make_layer(self, block, planes, num_blocks, stride):
|
| 112 |
+
strides = [stride] + [1] * (num_blocks - 1)
|
| 113 |
+
layers = []
|
| 114 |
+
for i in range(num_blocks):
|
| 115 |
+
stride = strides[i]
|
| 116 |
+
layers.append(block(self.in_planes, planes, stride))
|
| 117 |
+
self.in_planes = planes * block.expansion
|
| 118 |
+
return nn.Sequential(*layers)
|
| 119 |
+
|
| 120 |
+
def forward(self, x, layer=100):
|
| 121 |
+
out = self.maxpool(F.relu(self.bn1(self.conv1(x))))
|
| 122 |
+
out = self.layer1(out)
|
| 123 |
+
out = self.layer2(out)
|
| 124 |
+
out = self.layer3(out)
|
| 125 |
+
out = self.layer4(out)
|
| 126 |
+
out = self.avgpool(out)
|
| 127 |
+
out = torch.flatten(out, 1)
|
| 128 |
+
return out
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def resnet18(**kwargs):
|
| 132 |
+
return ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def resnet34(**kwargs):
|
| 136 |
+
return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def resnet50(**kwargs):
|
| 140 |
+
return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def resnet101(**kwargs):
|
| 144 |
+
return ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
model_dict = {
|
| 148 |
+
'resnet18': [resnet18, 512],
|
| 149 |
+
'resnet34': [resnet34, 512],
|
| 150 |
+
'resnet50': [resnet50, 2048],
|
| 151 |
+
'resnet101': [resnet101, 2048],
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
class LinearBatchNorm(nn.Module):
|
| 156 |
+
"""Implements BatchNorm1d by BatchNorm2d, for SyncBN purpose"""
|
| 157 |
+
|
| 158 |
+
def __init__(self, dim, affine=True):
|
| 159 |
+
super(LinearBatchNorm, self).__init__()
|
| 160 |
+
self.dim = dim
|
| 161 |
+
self.bn = nn.BatchNorm2d(dim, affine=affine)
|
| 162 |
+
|
| 163 |
+
def forward(self, x):
|
| 164 |
+
x = x.view(-1, self.dim, 1, 1)
|
| 165 |
+
x = self.bn(x)
|
| 166 |
+
x = x.view(-1, self.dim)
|
| 167 |
+
return x
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
class SupConResNet(nn.Module):
|
| 171 |
+
"""backbone + projection head"""
|
| 172 |
+
|
| 173 |
+
def __init__(self, name='resnet50', head='mlp', feat_dim=128, pool=False):
|
| 174 |
+
super(SupConResNet, self).__init__()
|
| 175 |
+
model_fun, dim_in = model_dict[name]
|
| 176 |
+
self.encoder = model_fun(pool=pool)
|
| 177 |
+
if head == 'linear':
|
| 178 |
+
self.head = nn.Linear(dim_in, feat_dim)
|
| 179 |
+
elif head == 'mlp':
|
| 180 |
+
self.head = nn.Sequential(
|
| 181 |
+
nn.Linear(dim_in, dim_in),
|
| 182 |
+
nn.ReLU(inplace=True),
|
| 183 |
+
nn.Linear(dim_in, feat_dim)
|
| 184 |
+
)
|
| 185 |
+
else:
|
| 186 |
+
raise NotImplementedError(
|
| 187 |
+
'head not supported: {}'.format(head))
|
| 188 |
+
|
| 189 |
+
def forward(self, x):
|
| 190 |
+
feat = self.encoder(x)
|
| 191 |
+
feat = F.normalize(self.head(feat), dim=1)
|
| 192 |
+
return feat
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
class SupCEResNet(nn.Module):
|
| 196 |
+
"""encoder + classifier"""
|
| 197 |
+
|
| 198 |
+
def __init__(self, name='resnet50', num_classes=10, pool=False):
|
| 199 |
+
super(SupCEResNet, self).__init__()
|
| 200 |
+
model_fun, dim_in = model_dict[name]
|
| 201 |
+
self.encoder = model_fun(pool=pool)
|
| 202 |
+
self.fc = nn.Linear(dim_in, num_classes)
|
| 203 |
+
|
| 204 |
+
def forward(self, x):
|
| 205 |
+
return self.fc(self.encoder(x))
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class LinearClassifier(nn.Module):
|
| 209 |
+
"""Linear classifier"""
|
| 210 |
+
|
| 211 |
+
def __init__(self, name='resnet50', num_classes=10):
|
| 212 |
+
super(LinearClassifier, self).__init__()
|
| 213 |
+
_, feat_dim = model_dict[name]
|
| 214 |
+
self.fc = nn.Linear(feat_dim, num_classes)
|
| 215 |
+
|
| 216 |
+
def forward(self, features):
|
| 217 |
+
return self.fc(features)
|