Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import requests | |
| import inspect | |
| import pandas as pd | |
| # (Keep Constants as is) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Basic Agent Definition --- | |
| # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
| import os | |
| from typing import TypedDict, List, Optional, Literal | |
| from langchain_openai import ChatOpenAI | |
| from langchain_core.messages import SystemMessage, HumanMessage, AIMessage, BaseMessage | |
| from langchain_core.output_parsers import StrOutputParser | |
| from langchain_core.tools import Tool | |
| from langgraph.graph import StateGraph, END | |
| from langgraph.prebuilt import ToolNode | |
| from typing_extensions import Annotated | |
| from langchain_core.messages import BaseMessage | |
| from langgraph.graph.message import add_messages | |
| from tool import web_search, web_fetch, _extract_video_id, youtube_transcript # wrappers from step 2 | |
| # ----------------------------- | |
| # State | |
| # ----------------------------- | |
| class AgentState(TypedDict): | |
| question: str | |
| messages: Annotated[list[BaseMessage], add_messages] | |
| final: Optional[str] | |
| steps: int | |
| last_error: Optional[str] | |
| MAX_STEPS = 10 | |
| HELP_PROMPT = ( | |
| "You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string." | |
| ) | |
| # ----------------------------- | |
| # LLM + Tools | |
| # ----------------------------- | |
| llm = ChatOpenAI( | |
| model="gpt-4o", | |
| api_key=os.environ["OPENAI_API_KEY"], | |
| temperature=0, | |
| ) | |
| tools = [web_search, web_fetch, youtube_transcript] | |
| tool_node = ToolNode(tools) | |
| # ----------------------------- | |
| # Helper: check final format | |
| # ----------------------------- | |
| import re | |
| def extract_final(text: str) -> Optional[str]: | |
| """ | |
| Robustly extracts the final answer, handling case sensitivity and bold formatting. | |
| """ | |
| # Use regex to find "FINAL ANSWER:" case-insensitive, potentially with ** or ## | |
| match = re.search(r"(?i)(\*\*|##)?\s*FINAL ANSWER\s*(\*\*|##)?\s*:\s*(.*)", text, re.DOTALL) | |
| if match: | |
| # Return the captured content (group 3) | |
| return match.group(3).strip() | |
| return None | |
| # ----------------------------- | |
| # Nodes | |
| # ----------------------------- | |
| def start(state: AgentState) -> AgentState: | |
| state["messages"] = [ | |
| SystemMessage(content=HELP_PROMPT), | |
| HumanMessage(content=state["question"]), | |
| ] | |
| state["steps"] = 0 | |
| state["final"] = None | |
| state["last_error"] = None | |
| return state | |
| def call_model(state: AgentState) -> AgentState: | |
| state["steps"] += 1 | |
| resp = llm.bind_tools(tools).invoke(state["messages"]) | |
| state["messages"].append(resp) | |
| return state | |
| def maybe_finalize(state: AgentState) -> AgentState: | |
| """If the model produced FINAL ANSWER, store it. Otherwise keep going.""" | |
| last = state["messages"][-1] | |
| if isinstance(last, AIMessage): | |
| final_line = extract_final(last.content if isinstance(last.content, str) else str(last.content)) | |
| if final_line: | |
| state["final"] = final_line | |
| return state | |
| def format_guard(state: AgentState) -> AgentState: | |
| """If we hit step limit and still no FINAL ANSWER, force one.""" | |
| if state["final"] is None: | |
| # Ask model to rewrite into the required format only | |
| state["messages"].append( | |
| HumanMessage( | |
| content="Rewrite your response to follow the required format exactly. " | |
| "Return only one line: FINAL ANSWER: ...") | |
| ) | |
| return state | |
| # ----------------------------- | |
| # Router: decide next step | |
| # ----------------------------- | |
| def route(state: AgentState) -> Literal["tools", "finalize", "guard", "end"]: | |
| # 1. First, check if the model wants to call tools. | |
| # We MUST execute tools if requested, otherwise we break the conversation chain. | |
| last = state["messages"][-1] | |
| if isinstance(last, AIMessage) and getattr(last, "tool_calls", None): | |
| return "tools" | |
| # 2. If no tools, check if we are done. | |
| if state["final"] is not None: | |
| return "end" | |
| # 3. TIME LIMIT CHECK | |
| if state["steps"] >= MAX_STEPS: | |
| # CHECK FOR DEATH LOOP: | |
| # Look at the message before the last one. Was it our "Rewrite" prompt? | |
| # If yes, we already tried to guard and it failed. Don't try again. | |
| messages = state["messages"] | |
| if len(messages) >= 2: | |
| second_to_last = messages[-2] | |
| if isinstance(second_to_last, HumanMessage) and "Rewrite your response" in str(second_to_last.content): | |
| # We tried, we failed. Just give up to save the recursion limit. | |
| return "end" | |
| # Otherwise, try the guard rail once. | |
| return "guard" | |
| # 4. Default loop | |
| return "finalize" | |
| # ----------------------------- | |
| # Build graph | |
| # ----------------------------- | |
| graph = StateGraph(AgentState) | |
| graph.add_node("start", start) | |
| graph.add_node("model", call_model) | |
| graph.add_node("tools", tool_node) | |
| graph.add_node("finalize", maybe_finalize) | |
| graph.add_node("guard", format_guard) | |
| graph.set_entry_point("start") | |
| graph.add_edge("start", "model") | |
| graph.add_edge("model", "finalize") | |
| graph.add_conditional_edges( | |
| "finalize", | |
| route, | |
| { | |
| "tools": "tools", | |
| "finalize": "model", | |
| "guard": "guard", | |
| "end": END, | |
| }, | |
| ) | |
| graph.add_edge("tools", "model") | |
| graph.add_edge("guard", "model") | |
| app = graph.compile() | |
| # ----------------------------- | |
| # Public callable (like your BasicAgent) | |
| # ----------------------------- | |
| class BasicAgentLangGraph: | |
| def __init__(self): | |
| print("BasicAgentLangGraph initialized.") | |
| def __call__(self, question: str) -> str: | |
| print(f"Agent received question (first 50 chars): {question[:50]}...") | |
| state: AgentState = { | |
| "question": question, | |
| "messages": [], | |
| "final": None, | |
| "steps": 0, | |
| "last_error": None, | |
| } | |
| out = app.invoke(state) | |
| # If still none, fallback | |
| return out["final"] or "FINAL ANSWER: not available" | |
| def run_and_submit_all( profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username= f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| agent = BasicAgentLangGraph() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| print("-"*(60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) |