Spaces:
Sleeping
Sleeping
import numpy as np | |
from hyperopt import Trials, fmin, hp, tpe | |
binary_operators = ["*", "/", "+", "-"] | |
unary_operators = ["sin", "cos", "exp", "log"] | |
space = dict( | |
# model_selection="best", | |
model_selection=hp.choice("model_selection", ["accuracy"]), | |
# binary_operators=None, | |
binary_operators=hp.choice("binary_operators", [binary_operators]), | |
# unary_operators=None, | |
unary_operators=hp.choice("unary_operators", [unary_operators]), | |
# populations=100, | |
populations=hp.qloguniform("populations", np.log(10), np.log(1000), 1), | |
# niterations=4, | |
niterations=hp.choice( | |
"niterations", [10000] | |
), # We will quit automatically based on a clock. | |
# ncyclesperiteration=100, | |
ncyclesperiteration=hp.qloguniform( | |
"ncyclesperiteration", np.log(10), np.log(5000), 1 | |
), | |
# alpha=0.1, | |
alpha=hp.loguniform("alpha", np.log(0.0001), np.log(1000)), | |
# annealing=False, | |
annealing=hp.choice("annealing", [False, True]), | |
# fraction_replaced=0.01, | |
fraction_replaced=hp.loguniform("fraction_replaced", np.log(0.0001), np.log(0.5)), | |
# fraction_replaced_hof=0.005, | |
fraction_replaced_hof=hp.loguniform( | |
"fraction_replaced_hof", np.log(0.0001), np.log(0.5) | |
), | |
# population_size=100, | |
population_size=hp.qloguniform("population_size", np.log(20), np.log(1000), 1), | |
# parsimony=1e-4, | |
parsimony=hp.loguniform("parsimony", np.log(0.0001), np.log(0.5)), | |
# topn=10, | |
topn=hp.qloguniform("topn", np.log(2), np.log(50), 1), | |
# weight_add_node=1, | |
weight_add_node=hp.loguniform("weight_add_node", np.log(0.0001), np.log(100)), | |
# weight_insert_node=3, | |
weight_insert_node=hp.loguniform("weight_insert_node", np.log(0.0001), np.log(100)), | |
# weight_delete_node=3, | |
weight_delete_node=hp.loguniform("weight_delete_node", np.log(0.0001), np.log(100)), | |
# weight_do_nothing=1, | |
weight_do_nothing=hp.loguniform("weight_do_nothing", np.log(0.0001), np.log(100)), | |
# weight_mutate_constant=10, | |
weight_mutate_constant=hp.loguniform( | |
"weight_mutate_constant", np.log(0.0001), np.log(100) | |
), | |
# weight_mutate_operator=1, | |
weight_mutate_operator=hp.loguniform( | |
"weight_mutate_operator", np.log(0.0001), np.log(100) | |
), | |
# weight_randomize=1, | |
weight_randomize=hp.loguniform("weight_randomize", np.log(0.0001), np.log(100)), | |
# weight_simplify=0.002, | |
weight_simplify=hp.choice("weight_simplify", [0.002]), # One of these is fixed. | |
# crossover_probability=0.01, | |
crossover_probability=hp.loguniform( | |
"crossover_probability", np.log(0.00001), np.log(0.2) | |
), | |
# perturbation_factor=1.0, | |
perturbation_factor=hp.loguniform( | |
"perturbation_factor", np.log(0.0001), np.log(100) | |
), | |
# maxsize=20, | |
maxsize=hp.choice("maxsize", [30]), | |
# warmup_maxsize_by=0.0, | |
warmup_maxsize_by=hp.uniform("warmup_maxsize_by", 0.0, 0.5), | |
# use_frequency=True, | |
use_frequency=hp.choice("use_frequency", [True, False]), | |
# optimizer_nrestarts=3, | |
optimizer_nrestarts=hp.quniform("optimizer_nrestarts", 1, 10, 1), | |
# optimize_probability=1.0, | |
optimize_probability=hp.uniform("optimize_probability", 0.0, 1.0), | |
# optimizer_iterations=10, | |
optimizer_iterations=hp.quniform("optimizer_iterations", 1, 10, 1), | |
# tournament_selection_p=1.0, | |
tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0), | |
) | |