import numpy as np from hyperopt import Trials, fmin, hp, tpe binary_operators = ["*", "/", "+", "-"] unary_operators = ["sin", "cos", "exp", "log"] space = dict( # model_selection="best", model_selection=hp.choice("model_selection", ["accuracy"]), # binary_operators=None, binary_operators=hp.choice("binary_operators", [binary_operators]), # unary_operators=None, unary_operators=hp.choice("unary_operators", [unary_operators]), # populations=100, populations=hp.qloguniform("populations", np.log(10), np.log(1000), 1), # niterations=4, niterations=hp.choice( "niterations", [10000] ), # We will quit automatically based on a clock. # ncyclesperiteration=100, ncyclesperiteration=hp.qloguniform( "ncyclesperiteration", np.log(10), np.log(5000), 1 ), # alpha=0.1, alpha=hp.loguniform("alpha", np.log(0.0001), np.log(1000)), # annealing=False, annealing=hp.choice("annealing", [False, True]), # fraction_replaced=0.01, fraction_replaced=hp.loguniform("fraction_replaced", np.log(0.0001), np.log(0.5)), # fraction_replaced_hof=0.005, fraction_replaced_hof=hp.loguniform( "fraction_replaced_hof", np.log(0.0001), np.log(0.5) ), # population_size=100, population_size=hp.qloguniform("population_size", np.log(20), np.log(1000), 1), # parsimony=1e-4, parsimony=hp.loguniform("parsimony", np.log(0.0001), np.log(0.5)), # topn=10, topn=hp.qloguniform("topn", np.log(2), np.log(50), 1), # weight_add_node=1, weight_add_node=hp.loguniform("weight_add_node", np.log(0.0001), np.log(100)), # weight_insert_node=3, weight_insert_node=hp.loguniform("weight_insert_node", np.log(0.0001), np.log(100)), # weight_delete_node=3, weight_delete_node=hp.loguniform("weight_delete_node", np.log(0.0001), np.log(100)), # weight_do_nothing=1, weight_do_nothing=hp.loguniform("weight_do_nothing", np.log(0.0001), np.log(100)), # weight_mutate_constant=10, weight_mutate_constant=hp.loguniform( "weight_mutate_constant", np.log(0.0001), np.log(100) ), # weight_mutate_operator=1, weight_mutate_operator=hp.loguniform( "weight_mutate_operator", np.log(0.0001), np.log(100) ), # weight_randomize=1, weight_randomize=hp.loguniform("weight_randomize", np.log(0.0001), np.log(100)), # weight_simplify=0.002, weight_simplify=hp.choice("weight_simplify", [0.002]), # One of these is fixed. # crossover_probability=0.01, crossover_probability=hp.loguniform( "crossover_probability", np.log(0.00001), np.log(0.2) ), # perturbation_factor=1.0, perturbation_factor=hp.loguniform( "perturbation_factor", np.log(0.0001), np.log(100) ), # maxsize=20, maxsize=hp.choice("maxsize", [30]), # warmup_maxsize_by=0.0, warmup_maxsize_by=hp.uniform("warmup_maxsize_by", 0.0, 0.5), # use_frequency=True, use_frequency=hp.choice("use_frequency", [True, False]), # optimizer_nrestarts=3, optimizer_nrestarts=hp.quniform("optimizer_nrestarts", 1, 10, 1), # optimize_probability=1.0, optimize_probability=hp.uniform("optimize_probability", 0.0, 1.0), # optimizer_iterations=10, optimizer_iterations=hp.quniform("optimizer_iterations", 1, 10, 1), # tournament_selection_p=1.0, tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0), )