Spaces:
Running
Getting Started
Installation
PySR uses both Julia and Python, so you need to have both installed.
Install Julia - see downloads, and
then instructions for mac
and linux.
(Don't use the conda-forge
version; it doesn't seem to work properly.)
You can install PySR with:
pip3 install pysr
python3 -c 'import pysr; pysr.install()'
The second line will install and update the required Julia packages, including
PyCall.jl
.
Quickstart
import numpy as np
from pysr import pysr, best, get_hof
# Dataset
X = 2*np.random.randn(100, 5)
y = 2*np.cos(X[:, 3]) + X[:, 0]**2 - 2
# Learn equations
equations = pysr(X, y, niterations=5,
binary_operators=["plus", "mult"],
unary_operators=["cos", "exp", "sin"])
...# (you can use ctl-c to exit early)
print(best())
which gives:
x0**2 + 2.000016*cos(x3) - 1.9999845
The second and additional calls of pysr
will be significantly
faster in startup time, since the first call to Julia will compile
and cache functions from the symbolic regression backend.
One can also use best_tex
to get the LaTeX form,
or best_callable
to get a function you can call.
This uses a score which balances complexity and error;
however, one can see the full list of equations with:
print(get_hof())
This is a pandas table, with additional columns:
MSE
- the mean square error of the formulascore
- a metric akin to Occam's razor; you should use this to help select the "true" equation.sympy_format
- sympy equation.lambda_format
- a lambda function for that equation, that you can pass values through.