Spaces:
Running
Running
from transformers import AutoModel, AutoTokenizer | |
import torch.nn as nn | |
import torch | |
class SingleLabelClassifier(nn.Module): | |
def __init__(self, base_model_name, num_labels, hidden_size=2024, freeze_bert=True): | |
super(SingleLabelClassifier, self).__init__() | |
self.base = AutoModel.from_pretrained(base_model_name) | |
if freeze_bert: | |
for name, param in self.base.named_parameters(): | |
if not name.startswith("embeddings"): | |
param.requires_grad = False | |
self.intermediate = nn.Linear(self.base.config.hidden_size, hidden_size) | |
self.norm = nn.LayerNorm(hidden_size) | |
self.activation = nn.ReLU() | |
self.dropout = nn.Dropout(0.5) | |
self.classifier = nn.Linear(hidden_size, num_labels) | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None,labels=None): | |
outputs = self.base( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
return_dict=True | |
) | |
pooled_output = outputs.last_hidden_state[:, 0] | |
x = self.intermediate(pooled_output) | |
x = self.norm(x) | |
x = self.activation(x) | |
x = self.dropout(x) | |
logits = self.classifier(x) | |
loss = None | |
if labels is not None: | |
labels = labels.long() | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct(logits, labels) | |
return {"logits": logits, "loss": loss} |